Global Bifurcations and Chaos
Springer-Verlag New York Inc.
978-1-4612-1041-2 (ISBN)
1. Introduction: Background for Ordinary Differential Equations and Dynamical Systems.- 1.1. The Structure of Solutions of Ordinary Differential Equations.- 1.2. Conjugacies.- 1.3. Invariant Manifolds.- 1.4. Transversality, Structural Stability, and Genericity.- 1.5. Bifurcations.- 1.6. Poincaré Maps.- 2. Chaos: Its Descriptions and Conditions for Existence.- 2.1. The Smale Horseshoe.- 2.2. Symbolic Dynamics.- 2.3. Criteria for Chaos: The Hyperbolic Case.- 2.4. Criteria for Chaos: The Nonhyperbolic Case.- 3. Homoclinic and Heteroclinic Motions.- 3.1. Examples and Definitions.- 3.2. Orbits Homoclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.3. Orbits Heteroclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.4. Orbits Homoclinic to Periodic Orbits and Invariant Tori.- 4. Global Perturbation Methods for Detecting Chaotic Dynamics.- 4.1. The Three Basic Systems and Their Geometrical Structure.- 4.2. Examples.- 4.3. Final Remarks.- References.
| Reihe/Serie | Applied Mathematical Sciences ; 73 |
|---|---|
| Zusatzinfo | XIV, 495 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie | |
| Schlagworte | Analysis |
| ISBN-10 | 1-4612-1041-0 / 1461210410 |
| ISBN-13 | 978-1-4612-1041-2 / 9781461210412 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich