On differential-algebraic control systems
Seiten
2014
TU Ilmenau Universitätsbibliothek (Verlag)
978-3-86360-081-5 (ISBN)
TU Ilmenau Universitätsbibliothek (Verlag)
978-3-86360-081-5 (ISBN)
- Titel leider nicht mehr lieferbar
- Artikel merken
In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior.
The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated.
For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior.
Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros.
The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated.
For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior.
Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros.
| Erscheint lt. Verlag | 1.1.2014 |
|---|---|
| Verlagsort | Ilmenau |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Gewicht | 450 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Differential-algebraisches Gleichungssystem • ifferential-algebraisches Gleichungssystem / Steuerbarkeit / Stabilität / Regelungstheorie • Regelungstheorie • Stabilität • Steuerbarkeit |
| ISBN-10 | 3-86360-081-9 / 3863600819 |
| ISBN-13 | 978-3-86360-081-5 / 9783863600815 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90