Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
An Introduction to Statistical Analysis of Random Arrays - V. L. Girko

An Introduction to Statistical Analysis of Random Arrays

(Autor)

Buch | Hardcover
XXVI, 673 Seiten
1998 | 1. Reprint 2018
De Gruyter (Verlag)
978-3-11-035477-5 (ISBN)
CHF 619,95 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m„(n) is equal to 0(n-1/2) under the condition m„n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index

Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m"(n) is equal to 0(n-1/2) under the condition m"n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index

Erscheint lt. Verlag 1.12.1998
Verlagsort Berlin/Boston
Sprache englisch
Maße 155 x 240 mm
Gewicht 1240 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Statistik
Schlagworte . • Allgemeines, Lexika • ALTOMARE • GSTM61 • Markov • Mathematics • operators • probability & statistics • probability and statistics • Statistics • Statistik • Zufall • Zufallsgröße
ISBN-10 3-11-035477-2 / 3110354772
ISBN-13 978-3-11-035477-5 / 9783110354775
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 23,75
Geschichten aus der europäischen Mathematik der Neuzeit

von Heinz Klaus Strick

Buch | Softcover (2024)
Springer (Verlag)
CHF 41,95