Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Basic Operator Theory - Israel Gohberg, Seymour Goldberg

Basic Operator Theory

Buch | Softcover
304 Seiten
1981 | 2001 ed.
Birkhauser Boston Inc (Verlag)
978-0-8176-3028-7 (ISBN)
CHF 97,35 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat­ ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz­ Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal­ ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ­ ing this book, the authors were strongly influenced by re­ cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com­ prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap­ ters V, VII and XII due to the specialized nature of the subject matter.

Introduction * I. Hilbert Spaces * II. Bounded Linear Operators on Hilbert Spaces * III. Spectral Theory of Compact Self Adjoint Operators * IV. Spectral Theory of Integral Operators * V. Oscillations of an Elastic String * VI. Operational Calculus with Applications * VII. Solving Linear Equations by Iterative Methods * VIII. Further Developments of the Spectral Theorem * IX. Banach Spaces * X. Linear Operators on a Banach Space * XI. Compact Operators on a Banach Space * XII. Non-Linear Operators * Appendix 1. Countable Sets and Separable Hilbert Spaces * Appendix 2. Lebesgue Integration and LP Spaces * Appendix 3. Proof of the Hahn-Banach Theorem * Appendix 4. Proof of the Closed Graph Theorem * Suggested Reading * References * Index

Erscheint lt. Verlag 1.1.1981
Zusatzinfo XIII, 304 p.
Verlagsort Secaucus
Sprache englisch
Maße 155 x 235 mm
Gewicht 950 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 0-8176-3028-7 / 0817630287
ISBN-13 978-0-8176-3028-7 / 9780817630287
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich