Parabolic Boundary Value Problems
Springer Basel (Verlag)
978-3-0348-9765-5 (ISBN)
I Equations and Problems.- I.1 Equations.- I.2 Initial and boundary value problems.- II Functional Spaces.- II.1 Spaces of test functions and distributions.- II.2 The Hilbert spaces Hs and ?s.- II.3 Banach spaces of Hölder functions.- III Linear Operators.- III.1 Operators of potential type.- III.2 Operators of multiplication by a function.- III.3 Commutators. Green formulas.- III.4 On equivalent norms in ?s(?+n+1,?), ?s(E+n+1,?), and Hs(?+n), s ? 0.- III.5 The spaces $${{tilde{H}}^{s}}$$ and $${{tilde{mathcal{H}}}^{s}}$$.- III.6 Differential operators in the space $${{tilde{mathcal{H}}}^{s}}$$.- IV Parabolic Boundary Value Problems in Half-Space.- IV.1 Non-homogeneous systems in the space ?++s(?n+1,?).- IV.2 Initial value and Cauchy problems for parabolic systems in spaces ?s.- IV.3 Model parabolic boundary value problems in $$bar{mathbb{R}}_{{ + + }}^{{n + 1}}$$.- IV.4 The model boundary value problemin in $$bar{mathbb{R}}_{{ + + }}^{{n + 1}}$$ for general parabolic systems.- IV.5 The model parabolic conjugation problem in classes of smooth functions.- IV.6 Boundary value problem in $$tilde{mathcal{H}}_{ + }^{s}(bar{mathbb{R}}_{{ + + }}^{{n + 1}},gamma )$$ for operators in which the coefficients of the highest-order derivatives are slowly varying functions.- IV.7 Conjugation problem for operators in which the coefficients of the highest-order derivatives are slowly varying.- V Parabolic Boundary Value Problems in Cylindrical Domains.- V.1 Boundary value problems in a semi-infinite cylinder.- V.2 Nonlocal boundary value problems. Conjugation problems.- V.3 Boundary value problems in cylindrical domains of finite height.- V.4 Solvability of the parabolic boundary value problems for right-hand sides with regular singularities.- V.5 Greenformula, boundary and initial values of weak generalized solutions.- VI The Cauchy Problem and Parabolic Boundary Value Problems in Spaces of Smooth Functions.- VI.1 Fundamental solutions of the Cauchy problem.- VI.2 The Cauchy problem.- VI.3 Schauder theory of parabolic boundary value problems.- VI.4 Green functions.- VII Behaviour of Solutions of Parabolic Boundary Value Problems for Large Values of Time.- VII.1 Asymptotic representations and stabilization of solutions of model problems.- VII.2 Tikhonov's problem.- Comments.- References.
| Erscheint lt. Verlag | 24.10.2012 |
|---|---|
| Reihe/Serie | Operator Theory: Advances and Applications |
| Zusatzinfo | XI, 300 p. |
| Verlagsort | Basel |
| Sprache | englisch |
| Maße | 160 x 240 mm |
| Gewicht | 506 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Analysis • Boundary value problem • Distribution • Finite • Function • hilbert space |
| ISBN-10 | 3-0348-9765-0 / 3034897650 |
| ISBN-13 | 978-3-0348-9765-5 / 9783034897655 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich