Approximation by Spline Functions
Springer Berlin (Verlag)
9783642647994 (ISBN)
I. Polynomials and Chebyshev Spaces.- 1. Interpolation by Chebyshev Spaces.- 2. Interpolation by Polynomials and Divided Differences.- 3. Best Uniform Approximation by Chebyshev Spaces.- 4. Best L1-Approximation by Chebyshev Spaces.- 5. Best One-Sided L1-Approximation by Chebyshev Spaces and Quadrature Formulas.- 6. Best L2-Approximation.- II. Splines and Weak Chebyshev Spaces.- 1. Weak Chebyshev Spaces.- 2. B-Splines.- 3. Interpolation by Splines.- 4. Best Uniform Approximation by Splines.- 5. Continuity of the Set Valued Metric Projection for Spline Spaces....- 6. Best L1-Approximation by Weak Chebyshev Spaces.- 7. Best One-Sided L1-Approximation by Weak Chebyshev Spaces and Quadrature Formulas.- 8. Approximation of Linear Functionals and Splines.- 9. Spaces of Splines with Multiple Knots.- 1. Splines with Free Knots.- 2. Splines in Two Variables.- 2.1. Tensor Product and Blending.- 2.2. Finite Element Functions.- 2.3. Spline Functions.- 3. Spline Collocation and Differential Equations.- References.
| Erscheint lt. Verlag | 20.11.2013 |
|---|---|
| Zusatzinfo | XI, 244 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 170 x 244 mm |
| Gewicht | 454 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-13 | 9783642647994 / 9783642647994 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich