Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Wie oft können sich empirische Lorenzkurven schneiden? -  Frank Scherer

Wie oft können sich empirische Lorenzkurven schneiden? (eBook)

eBook Download: PDF
1998 | 1. Auflage
51 Seiten
diplom.de (Verlag)
978-3-8324-0613-4 (ISBN)
Systemvoraussetzungen
38,00 inkl. MwSt
(CHF 37,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschließend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und [...]
Erscheint lt. Verlag 14.1.1998
Sprache deutsch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik
ISBN-10 3-8324-0613-1 / 3832406131
ISBN-13 978-3-8324-0613-4 / 9783832406134
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)
Größe: 1,7 MB

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich