Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Learning Motor Skills

From Algorithms to Robot Experiments

, (Autoren)

Buch | Hardcover
XVI, 191 Seiten
2013
Springer International Publishing (Verlag)
978-3-319-03193-4 (ISBN)

Lese- und Medienproben

Learning Motor Skills - Jens Kober, Jan Peters
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This overview by an award-winning researcher of the ways reinforcement learning can be applied to robotics includes new algorithms and applications. It assesses their success in benchmark tasks such as darts, table tennis, and ball-throwing and bouncing.

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor.

skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author's doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.

Jan Peters war Professor für Agrar-, Sozial- und Mentalitätsgeschichte der Frühen Neuzeit an der Universität Potsdam.

Reinforcement Learning in Robotics: A Survey.- Movement Templates for Learning of Hitting and Batting.- Policy Search for Motor Primitives in Robotics.- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations.- Learning Prioritized Control of Motor Primitives.

Erscheint lt. Verlag 9.12.2013
Reihe/Serie Springer Tracts in Advanced Robotics
Zusatzinfo XVI, 191 p. 56 illus., 54 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 479 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte machine learning • Motor Primitives • Policy Search • Reinforcement Learning • Robotics • Skill Learning
ISBN-10 3-319-03193-7 / 3319031937
ISBN-13 978-3-319-03193-4 / 9783319031934
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95