Automated Deduction in Geometry
Springer Berlin (Verlag)
978-3-540-42598-4 (ISBN)
On Spatial Constraint Solving Approaches.- A Hybrid Method for Solving Geometric Constraint Problems.- Solving the Birkhoff Interpolation Problem via the Critical Point Method: An Experimental Study.- A Practical Program of Automated Proving for a Class of Geometric Inequalities.- Randomized Xero Testing of Radical Expressions and Elementary Geometry Theorem Proving.- Algebraic and Semialgebraic Proofs: Methods and Paradoxes.- Remarks on Geometric Theorem Proving.- The Kinds of Truth of Geometry Theorems.- A Complex Change of Variables for Geometrical Reasoning.- Reasoning about Surfaces Using Differential Zero and Ideal Decomposition.- Effective Methods in Computational Synthetic Geometry.- Decision Complexity in Dynamic Geometry.- Automated Theorem Proving in Incidence Geometry - A Bracket Algebra Based Elimination Method.- Qubit Logic, Algebra and Geometry.- Nonstandard Geometric Proofs.- Emphasizing Human Techniques in Automated Geometry Theorem Proving: A Practical Realization.- Higher-Order Intuitionistic Formalization and Proofs in Hilbert's Elementary Geometry.
| Erscheint lt. Verlag | 12.9.2001 |
|---|---|
| Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
| Zusatzinfo | VIII, 328 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 481 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | Automat • automated deduction • Computer-Aided Design • computer vision • Formal Verification • Geometric Deduction • geometric design • Geometric Modeling • Geometric Problem Solving • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • proving • theorem proving |
| ISBN-10 | 3-540-42598-5 / 3540425985 |
| ISBN-13 | 978-3-540-42598-4 / 9783540425984 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich