A First Course in Real Analysis
Springer-Verlag New York Inc.
978-1-4612-6433-0 (ISBN)
1 Axioms for the Field ? of Real Numbers.- §1.1. The field axioms.- §1.2. The order axioms.- §1.3. Bounded sets, LUB and GLB.- §1.4. The completeness axiom (existence of LUB’s).- 2 First Properties of ?.- §2.1. Dual of the completeness axiom (existence of GLB’s).- §2.2. Archimedean property.- §2.3. Bracket function.- §2.4. Density of the rationals.- §2.5. Monotone sequences.- §2.6. Theorem on nested intervals.- §2.7. Dedekind cut property.- §2.8. Square roots.- §2.9. Absolute value.- 3 Sequences of Real Numbers, Convergence.- §3.1. Bounded sequences.- §3.2. Ultimately, frequently.- §3.3. Null sequences.- §3.4. Convergent sequences.- §3.5. Subsequences, Weierstrass-Bolzano theorem.- §3.6. Cauchy’s criterion for convergence.- §3.7. limsup and liminf of a bounded sequence.- 4 Special Subsets of ?.- §4.1. Intervals.- §4.2. Closed sets.- §4.3. Open sets, neighborhoods.- §4.4. Finite and infinite sets.- §4.5. Heine-Borel covering theorem.- 5 Continuity.- §5.1. Functions, direct images, inverse images.- §5.2. Continuity at a point.- §5.3. Algebra of continuity.- §5.4. Continuous functions.- §5.5. One-sided continuity.- §5.6. Composition.- 6 Continuous Functions on an Interval.- §6.1. Intermediate value theorem.- §6.2. n’th roots.- §6.3. Continuous functions on a closed interval.- §6.4. Monotonic continuous functions.- §6.5. Inverse function theorem.- §6.6. Uniform continuity.- 7 Limits of Functions.- §7.1. Deleted neighborhoods.- §7.2. Limits.- §7.3. Limits and continuity.- §7.4. ?,?characterization of limits.- §7.5. Algebra of limits.- 8 Derivatives.- §8.1. Differentiability.- §8.2. Algebra of derivatives.- §8.3. Composition (Chain Rule).- §8.4. Local max and min.- §8.5. Mean value theorem.- 9 Riemann Integral.- §9.1. Upper and lower integrals: the machinery.- §9.2. First properties of upper and lower integrals.- §9.3. Indefinite upper and lower integrals.- §9.4. Riemann-integrable functions.- §9.5. An application: log and exp.- §9.6. Piecewise pleasant functions.- §9.7.Darboux’s theorem.- §9.8. The integral as a limit of Riemann sums.- 10 Infinite Series.- §10.1. Infinite series: convergence, divergence.- §10.2. Algebra of convergence.- §10.3. Positive-term series.- §10.4. Absolute convergence.- 11 Beyond the Riemann Integral.- §11.1 Negligible sets.- §11.2 Absolutely continuous functions.- §11.3 The uniqueness theorem.- §11.4 Lebesgue’s criterion for Riemann-integrability.- §11.5 Lebesgue-integrable functions.- §A.1 Proofs, logical shorthand.- §A.2 Set notations.- §A.3 Functions.- §A.4 Integers.- Index of Notations.
| Reihe/Serie | Undergraduate Texts in Mathematics |
|---|---|
| Zusatzinfo | XI, 240 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4612-6433-2 / 1461264332 |
| ISBN-13 | 978-1-4612-6433-0 / 9781461264330 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich