Schüler lernen bereits, wie sie eine dierenzierbare Funktion (in der Schule nur größtenteils reellwertige Polynomfunktionen ab 2. Grades) in ein Produkt ihrer Linearfaktoren zerlegen, sodass ihre Nullstellen aus diesem Produkt direkt ablesbar sind. Doch auch andersherum wird in der Schule gelehrt, wie anhand von vorgegebenen Nullstellen bestimmten Grades eine solche differenzierbare Funktion "gebastelt" werden kann. Diese dort noch sehr simple Theorie wird in der Funktionentheorie oder auch komplexen Analysis auf komplexwertige Funktionen erweitert. Mit ebendiesem Thema werden wir uns in dieser Arbeit beschäftigen.
Karl Theodor Wilhelm Weierstra (1815- 1897), ein bedeutsamer Mathematiker aus dem Münsterland, widmete sich in der zweiten Hälfte des 19. Jahrhunderts der Theorie der Produktentwicklung einer Funktion anhand ihrer Nullstellen. Sein Ergebnis, dass es ganze Funktionen (Definition folgt) mit willkürlich vorgegebenen Nullstellen gibt, veränderte das mathematische Denken der Funktionentheoretiker im 19. Jahrhundert grundlegend. Man konnte mit dieser Erkenntnis auf einmal neue Funktionen "bauen", die im damaligen Funktionenvorrat noch nicht vorgekommen waren.
Der Satz, der das Fundament dieser Theorie von Weierstra darstellt, ist der sogenannte Weierstrasche Produktsatz über C. Er wird den Mittelpunkt dieser Arbeit darstellen. Wir werden uns in diesem Kapitel grundlegenden Denitionen und Sätzen der Funktionentheorie zuwenden. Es soll als knappe (wiederholende) Einführung für den Leser in die Funktionentheorie dienen.
Im anschlieenden zweiten Kapitel werden wir die unendlichen Produkte in
C näher betrachten. Verschiedene Arten von Konvergenz sollen de
niert und umschrieben werden. Im dritten Teil, dem wichtigsten dieser Arbeit, werden wir uns dem Weierstraschen Produktsatz mit Hilfe der vorigen Kapitel nähern und ihn beweisen, sowie ein Beispiel für seine Anwendung anführen.
Abschließend wollen wir im letzten Kapitel den Weierstraschen Produktsatz
auf die Ebene C = R2 anwenden. Wir werden die sogenannte Weierstrasche
-Funktion herleiten und aus ihr noch zwei weitere Weierstraßsche Funktionen entwickeln.
| Erscheint lt. Verlag | 19.9.2013 |
|---|---|
| Verlagsort | München |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Technik | |
| Schlagworte | Funktionentheorie • klaus_langmann • Klaus Langmann • Lorenz |
| ISBN-13 | 9783656501169 / 9783656501169 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich