Neurocomputation in Remote Sensing Data Analysis
Springer Berlin (Verlag)
9783642638282 (ISBN)
Open Questions in Neurocomputing for Earth Observation.- A Comparison of the Characterisation of Agricultural Land Using Singular Value Decomposition and Neural Networks.- Land Cover Mapping from Remotely Sensed Data with a Neural Network: Accommodating Fuzziness.- Geological Mapping Using Multi-Sensor Data: A Comparison of Methods.- Application of Neural Networks and Order Statistics Filters to Speckle Noise Reduction in Remote Sensing Imaging.- Neural Nets and Multichannel Image Processing Applications.- Neural Networks for Classification of Ice Type Concentration from ERS-1 SAR Images. Classical Methods versus Neural Networks.- A Neural Network Approach to Spectral Mixture Analysis.- Comparison Between Systems of Image Interpretation.- Feature Extraction for Neural Network Classifiers.- Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size.- Comparison and Combination of Statistical and Neural Network Algorithms for Remote-Sensing Image Classification.- Integrating the Alisa Classifier with Knowledge-Based Methods for Cadastral-Map Interpretation.- A Hybrid Method for Preprocessing and Classification of SPOT Images.- Testing some Connectionist Approaches for Thematic Mapping of Rural Areas.- Using Artificial Recurrent Neural Nets to Identify Spectral and Spatial Patterns for Satellite Imagery Classification of Urban Areas.- Dynamic Segmentation of Satellite Images Using Pulsed Coupled Neural Networks.- Non-Linear Diffusion as a Neuron-Like Paradigm for Low-Level Vision.- Application of the Constructive Mikado-Algorithm on Remotely Sensed Data.- A Simple Neural Network Contextual Classifier.- Optimising Neural Networks for Land Use Classification.- High Speed Image Segmentation Using a Binary Neural Network.- Efficient Processing and Analysis of Images Using Neural Networks.- Selection of the Number of Clusters in Remote Sensing Images by Means of Neural Networks.- A Comparative Study of Topological Feature Maps Versus Conventional Clustering for (Multi-Spectral) Scene Identification in METEOSAT Imagery.- Seif Organised Maps: the Combined Utilisation of Feature and Novelty Detectors.- Generalisation of Neural Network Based Segmentation Results for Classification Purposes.- Remote Sensing Applications Which may be Addressed by Neural Networks Using Parallel Processing Technology.- General Discussion.
| Erscheint lt. Verlag | 22.12.2012 |
|---|---|
| Zusatzinfo | IX, 284 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 457 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Wirtschaft ► Volkswirtschaftslehre | |
| Schlagworte | augmented reality • classification • Economic geology • Fuzziness • Image Analysis • Image Processing • map • Multispectral Image Classification • Neural networks • Remote Sensing • Satellite Image Processing |
| ISBN-13 | 9783642638282 / 9783642638282 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich