Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Uncertainty Modeling for Data Mining

A Label Semantics Approach
Buch | Hardcover
XIX, 291 Seiten
2014
Springer Berlin (Verlag)
9783642412509 (ISBN)

Lese- und Medienproben

Uncertainty Modeling for Data Mining - Zengchang Qin, Yongchuan Tang
CHF 179,70 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Outlining a new research direction in fuzzy set theory applied to data mining, this volume proposes a number of new data mining algorithms and includes dozens of figures and illustrations that help the reader grasp the complexities of the concepts.

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.

Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
Erscheint lt. Verlag 7.3.2014
Reihe/Serie Advanced Topics in Science and Technology in China
Zusatzinfo XIX, 291 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Computational Intelligence • Data Mining • Fuzzy Logic • HEP • Intelligent Systems • Modeling with Uncertainties
ISBN-13 9783642412509 / 9783642412509
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95