Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I
American Mathematical Society (Verlag)
978-0-8218-9147-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
David Carfi, University of Messina, Italy, USA Michel L. Lapidus, University of California, Riverside, CA, USA Erin P. J. Pearse, California Polytechnic State University, San Luis Obispo, CA, USA Machiel van Frankenhuijsen, Utah Valley University, Orem, UT, USA
Separation conditions for iterated function systems with overlaps by Q.-R. Deng, K.-S. Lau, and S.-M. Ngai $k$-point configurations of discrete self-similar sets by D. Essouabri and B. Lichtin Fractal complex dimensions, Riemann hypothesis and invertibility of the spectral operator by H. Herichi and M. L. Lapidus Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket by N. Kajino A survey on Minkowski measurability of self-similar and self-conformal fractals in $/mathbb{R}^d$ by S. Kombrink Minkowski measurability and exact fractal tube formulas for $p$-adic self-similar strings by M. L. Lapidus, H. Hung, and M. van Frankenhuijsen Minkowski measurability results for self-similar tilings and fractals with monophase generators by M. L. Lapidus, E. P. J. Pearse, and S. Winter Multifractal analysis via scaling zeta functions and recursive structure of lattice strings by R. de Santiago, M. L. Lapidus, S. A. Roby, and J. A. Rock Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension by M. L. Lapidus, J. A. Rock, and D. Zubrinic Hausdorff dimension of the limit set of countable conformal iterated function systems with overlaps by E. Mihailescu and M. Urbanski Multifractal tubes: Multifractal zeta-functions, multifractal Steiner formulas and explicit formulas by L. Olsen Laplacians on Julia sets III: Cubic Julia sets and formal matings by C. Spicer, R. S. Strichartz, and E. Totari Lipschitz equivalence of self-similar sets: Algebraic and geometric properties by H. Rao, H.-J. Ruan, and Y. Wang Riemann zeros in arithmetic progression by M. van Frankenhuijsen Curvature measures of fractal sets by M. Zahle
| Reihe/Serie | Contemporary Mathematics |
|---|---|
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 456 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-9147-2 / 0821891472 |
| ISBN-13 | 978-0-8218-9147-6 / 9780821891476 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich