Computational Intelligence Systems and Applications
Physica (Verlag)
9783662003343 (ISBN)
1 Introduction.- 1.1 A general concept of computational intelligence.- 1.2 The building blocks of computational intelligence systems.- 1.3 Objectives and scope of this book.- 2 Elements of the theory of fuzzy sets.- 2.1 Basic notions, operations on fuzzy sets, and fuzzy relations.- 2.2 Fuzzy inference systems.- 3 Essentials of artificial neural networks.- 3.1 Processing elements and multilayer perceptrons.- 3.2 Radial basis function networks.- 4 Brief introduction to genetic algorithms.- 4.1 Basic components of genetic algorithms.- 4.2 Theoretical introduction to genetic computing.- 5 Main directions of combining artificial neural networks, fuzzy sets and evolutionary computations in designing computational intelligence systems.- 5.1 Artificial intelligence versus computational intelligence.- 5.2 Designing computational intelligence systems.- 5.3 Selected neuro-fuzzy systems.- 6 Neuro-fuzzy(-genetic) system for synthesizing rule-based knowledge from data.- 6.1 Synthesizing rule-based knowledge from data - statement of the problem.- 6.2 Neuro-fuzzy system in learning mode - problem of knowledge acquisition.- 6.3 Neuro-fuzzy system in inference mode - approximate inference engine.- 6.4 Learning techniques.- 6.5 A numerical example of synthesizing rule-based knowledge from data - modelling the Mackey-Glass chaotic time series.- 6.6 Synthesizing rule-based knowledge from "fish data".- 7 Rule-based neuro-fuzzy modelling of dynamic systems and designing of controllers.- 7.1 System identification - statement of the problem and its general solution in the framework of neuro-fuzzy methodology.- 7.2 Rule-based neuro-fuzzy modelling of an industrial gas furnace system.- 7.3 Designing the neuro-fuzzy controller for a simulated backing up of a truck.- 8Neuro-fuzzy(-genetic) rule-based classifier designed from data for intelligent decision support.- 8.1 Designing the classifier from data - statement of the problem.- 8.2 Learning mode of neuro-fuzzy classifier.- 8.3 Inference (decision making) mode of neuro-fuzzy classifier.- 8.4 Neuro-fuzzy decision support system for diagnosing breast cancer.- 8.5 Neuro-fuzzy-genetic decision support system for the glass identification problem (forensic science).- 8.6 Neuro-fuzzy-genetic decision support system for determining the age of abalone (marine biology).- 9 Fuzzy neural network for system modelling and control.- 9.1 Learning mode of the network.- 9.2 Inference mode of the network.- 9.3 Fuzzy neural modelling of dynamic systems (an industrial gas furnace system).- 9.4 Fuzzy neural controller.- 10 Fuzzy neural classifier.- 10.1 Learning and inference modes of the classifier.- 10.2 Fuzzy neural classifier for diagnosis of surgical cases in the domain of equine colic.- A Appendices.- A.1.1 Inputs.- A.1.2 Output.- A.2.1 Inputs.- A.2.2 Outputs - set of two class labels.- A.3.1 Inputs.- A.3.2 Outputs - set of two class labels.- A.4.1 Inputs.- A.4.2 Outputs - set of three class labels.- A.5.1 Inputs.- A.5.2 Outputs - three sets of class labels.- References.
| Erscheint lt. Verlag | 4.8.2012 |
|---|---|
| Reihe/Serie | Studies in Fuzziness and Soft Computing |
| Zusatzinfo | X, 364 p. |
| Verlagsort | Heidelberg |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 575 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Schlagworte | Artificial Intelligence • Artificial Neural Network • Computational Intelligence • Decision support system • Decision Tree • fuzzy • Genetic algorithms • inference engine • Intelligence • Intelligent Decision Support • Knowledge • Knowledge Discover • Modeling • neural network • Neuro-Fuzzy Systems |
| ISBN-13 | 9783662003343 / 9783662003343 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich