Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Ergodic Theory of Random Transformations - Yuri Kifer

Ergodic Theory of Random Transformations

(Autor)

Buch | Softcover
210 Seiten
2012 | Softcover reprint of the original 1st ed. 1986
Birkhauser Boston Inc (Verlag)
978-1-4684-9177-7 (ISBN)
CHF 112,00 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps.
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma­ tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

I. General analysis of random maps.- 1.1. Markov chains as compositions of random maps.- 1.2. Invariant measures and ergodicity.- 1.3. Characteristic exponents in metric spaces.- II. Entropy characteristics of random transformations.- 2.1. Measure theoretic entropies.- 2.2. Topological entropy.- 2.3. Topological pressure.- III. Random bundle maps.- 3.1. Oseledec’s theorem and the “non-random” multiplicative ergodic theorem.- 3.2. Biggest characteristic exponent.- 3.3. Filtration of invariant subbundles.- IV. Further study of invariant subbundles and characteristic exponents.- 4.1. Continuity of invariant subbundles.- 4.2 Stability of the biggest exponent.- 4.3. Exponential growth rates.- V. Smooth random transformations.- 5.1. Random diffeomorphisms.- 5.2. Stochastic flows.- A. 1. Ergodic decompositions.- A.2. Subadditive ergodic theorem.- References.

Erscheint lt. Verlag 2.6.2012
Reihe/Serie Progress in Probability ; 10
Zusatzinfo X, 210 p.
Verlagsort Secaucus
Sprache englisch
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4684-9177-6 / 1468491776
ISBN-13 978-1-4684-9177-7 / 9781468491777
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Marie-Luise Kreuter

Buch | Hardcover (2025)
Gräfe und Unzer Verlag GmbH
CHF 51,90