Ordinary Differential Equations
Springer-Verlag New York Inc.
978-1-4612-6834-5 (ISBN)
I. First Order Equations: Some Integrable Cases.- § 1. Explicit First Order Equations.- § 2. The Linear Differential Equation. Related Equations.- § 3. Differential Equations for Families of Curves. Exact Equations.- § 4. Implicit First Order Differential Equations.- II: Theory of First Order Differential Equations.- § 5. Tools from Functional Analysis.- § 6. An Existence and Uniqueness Theorem.- § 7. The Peano Existence Theorem.- § 8. Complex Differential Equations. Power Series Expansions.- § 9. Upper and Lower Solutions. Maximal and Minimal Integrals.- III: First Order Systems. Equations of Higher Order.- § 10. The Initial Value Problem for a System of First Order.- § 11. Initial Value Problems for Equations of Higher Order.- § 12. Continuous Dependence of Solutions.- § 13. Dependence of Solutions on Initial Values and Parameters.- IV: Linear Differential Equations.- § 14. Linear Systems.- § 15. Homogeneous Linear Systems.- § 16. Inhomogeneous Systems.- § 17. Systems with Constant Coefficients.- § 18. Matrix Functions. Inhomogeneous Systems.- § 19. Linear Differential Equations of Order n.- § 20. Linear Equations of Order nwith Constant Coefficients.- V: Complex Linear Systems.- § 21. Homogeneous Linear Systems in the Regular Case.- § 22. Isolated Singularities.- § 23. Weakly Singular Points. Equations of Fuchsian Type.- § 24. Series Expansion of Solutions.- § 25. Second Order Linear Equations.- VI: Boundary Value and Eigenvalue Problems.- § 26. Boundary Value Problems.- § 27. The Sturm—Liouville Eigenvalue Problem.- § 28. Compact Self-Adjoint Operators in Hilbert Space.- VII: Stability and Asymptotic Behavior.- § 29. Stability.- § 30. The Method of Lyapunov.- A. Topology.- B. Real Analysis.- C. C0111plex Analysis.- D. FunctionalAnalysis.- Solutions and Hints for Selected Exercises.- Literature.- Notation.
| Erscheint lt. Verlag | 17.10.2012 |
|---|---|
| Reihe/Serie | Graduate Texts in Mathematics ; 182 |
| Übersetzer | R. Thompson |
| Zusatzinfo | XI, 384 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4612-6834-6 / 1461268346 |
| ISBN-13 | 978-1-4612-6834-5 / 9781461268345 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich