The Decomposition of Primes in Torsion Point Fields
Seiten
2001
Springer Berlin (Verlag)
978-3-540-42035-4 (ISBN)
Springer Berlin (Verlag)
978-3-540-42035-4 (ISBN)
It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.
Introduction.- Decomposition laws.- Elliptic curves.- Elliptic modular curves.- Torsion point fields.- Invariants and resolvent polynomials.- Appendix: Invariants of elliptic modular curves; L-series coefficients a p; Fully decomposed prime numbers; Resolvent polynomials; Free resolution of the invariant algebra.
| Erscheint lt. Verlag | 22.5.2001 |
|---|---|
| Reihe/Serie | Lecture Notes in Mathematics |
| Zusatzinfo | VIII, 148 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 239 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Schlagworte | Algebra • algebraic number theory • Elliptic Curve • Invariant theory • modular form • Number Theory • Prime number • Torsion |
| ISBN-10 | 3-540-42035-5 / 3540420355 |
| ISBN-13 | 978-3-540-42035-4 / 9783540420354 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Mengeneigenschaften im Muster der Universellen Gleichmäßigkeit im …
Buch | Spiralbindung (2025)
White, J (Verlag)
CHF 208,55
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 108,20