Radial Basis Function Networks 1
Recent Developments in Theory and Applications
Seiten
2001
Physica (Verlag)
978-3-7908-1367-8 (ISBN)
Physica (Verlag)
978-3-7908-1367-8 (ISBN)
The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.
Dynamic RBF networks.- A hyperrectangle-based method that creates RBF networks.- Hierarchical radial basis function networks.- RBF neural networks with orthogonal basis functions.- On noise-immune RBF networks.- Robust RBF networks.- An introduction to kernel methods.- Unsupervised learning using radial kernels.- RBF learning in a non-stationary environment: the stability-plasticity dilemma.- A new learning theory and polynomial-time autonomous learning algorithms for generating RBF networks.- Evolutionary optimization of RBF networks.
| Erscheint lt. Verlag | 27.3.2001 |
|---|---|
| Reihe/Serie | Studies in Fuzziness and Soft Computing |
| Zusatzinfo | XVIII, 318 p. |
| Verlagsort | Heidelberg |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 602 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | algorithms • biomedical engineering • classification • Genetic algorithms • Kernel • learning • Learning theory • neural network • Neural networks • Neuronale Netze • Optimization • Performance • proving • Radial Basis Function • RBF • robot • Robotics • supervised learning |
| ISBN-10 | 3-7908-1367-2 / 3790813672 |
| ISBN-13 | 978-3-7908-1367-8 / 9783790813678 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20