Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Krichever–Novikov Type Algebras - Martin Schlichenmaier

Krichever–Novikov Type Algebras

Theory and Applications
Media-Kombination
XV, 360 Seiten | Ausstattung: Hardcover & eBook
2014
De Gruyter
9783110280258 (ISBN)
CHF 226,50 inkl. MwSt
  • Titel leider nicht mehr lieferbar
  • Artikel merken
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are still manageable. This book gives an introduction for the newcomer to this exciting field of ongoing research in mathematics and will be a valuable source of reference for the experienced researcher. Beside the basic constructions and results also applications are presented.

Martin Schlichenmaier, University of Luxembourg, Luxembourg.

Reihe/Serie De Gruyter Studies in Mathematics ; 53
Zusatzinfo Includes a print version and an ebook
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Schlagworte conformal field theory • Krichever-Novikov • Lie Algebras • Lie algebras, Riemann surfaces, Moduli spaces, Mathematical physics, Conformal field theory. • Lie algebras; Riemann surfaces; Moduli spaces; Mathematical physics; Conformal field theory • Mathematical Physics • moduli spaces • Riemann Surfaces
ISBN-13 9783110280258 / 9783110280258
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?