Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Regularization Theory for Ill-posed Problems - Shuai Lu, Sergei V. Pereverzev

Regularization Theory for Ill-posed Problems

Selected Topics
Media-Kombination
XIV, 289 Seiten | Ausstattung: Hardcover & eBook
2013
De Gruyter
9783110286502 (ISBN)
CHF 259,95 inkl. MwSt
  • Titel leider nicht mehr lieferbar
  • Artikel merken
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects.He demonstrates new,differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory,such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDstudents and researchersin mathematics, natural sciences, engeneering, and medicine.

Shuai Lu, Fudan University, Shanghai, PR China; Sergei V. Pereverzev, Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences,Linz, Austria.

Reihe/Serie Inverse and Ill-Posed Problems Series ; 58
Zusatzinfo Includes a print version and an ebook
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Balancing Principle • Blood Glucose Prediction • Convergence Rate • Discrepancy Principle • Error Bound Estimation • ill-posed problem • Ill-posed Problem; Regularization Method; Multi-parameter Regularization; Discrepancy Principle; Balancing Principle; Error Bound Estimation; Convergence Rate; Learning Theory, Meta-learning; Blood Glucose Prediction • Learning Theory, Meta-learning • Multi-parameter Regularization • regularization method
ISBN-13 9783110286502 / 9783110286502
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich