Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Contemporary Perspectives in Data Mining -

Contemporary Perspectives in Data Mining

Buch | Hardcover
254 Seiten
2012
Information Age Publishing (Verlag)
9781623960568 (ISBN)
CHF 139,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The Contemporary Perspectives on Data Mining series features blind refereed research on data mining methods and applications, targeting both academics and business practitioners.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner.

Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted form this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups.

Data mining applications are seen in finance (banking, brokerage, insurance), marketing (customer relationships, retailing, logistics, travel), as well as in manufacturing, health care, fraud detection, home-land security, and law enforcement.

Kenneth D. Lawrence, New Jersey Institute of Technology, USA. Ronald Klimberg, Saint Joseph’s University, USA.

Section A: Methodological Studies.

Chapter 1. Frame Selection Based on Mixtures of Trees in Discrete Data, Hui Zhao, Xing Wang, Wei Yuan, Susan X. Li, and Zhimin Huang.

Chapter 2. Data Mining Techniques for Quality Improvement, Seoung Bum Kim.

Chapter 3. Big Bang Data Generation: Reinforcement for the Discriminant Problem, Gregory Smith.

Chapter 4. Business Analytics: Today's Green? Ronald K. Klimberg and B. D. McCullough.

Chapter 5. Change Point Plots: A Graphical Method for Identifying Changes in the Distribution of a Random Variable Over Time, James J. Cochran.

Section B: Financial Studies.

Chapter 6. Discovering the Co-movement Structure of Chinese Stock Market by SPACE with EM Algorithm, ShiYuan He, Xing Wang, Wei Yuan, Susan X. Li, and Zhimin Huang.

Chapter 7. Knowledge Discovery for Continuous Financial Assurance Using Multiple Types of Digital Information, Daniel E. O'Leary.

Chapter 8. Regression Estimation of a Cost Function with Severe Data Problems and Extreme Values of Observations in the Maintenance and Repair Activities of Backbone Internet Providers, Kenneth D. Lawrence, Dinesh R. Pai, and Sheila M. Lawrence.

Section C: Behavioral Studies.

Chapter 9. Data Mining's Usefulness for Assessing Market Segmentation Performance, Paul Mangiameli, Illya Mowerman, Albert Della Bitta, and James Mangiameli.

Chapter 10. Measuring the Semantic and Representational Consistency of Interconnected Structured and Unstructured Data for Data Mining Applications, Roger Blake and Paul Mangiameli.

Chapter 11. Clustering and Principal Components Analyses to Understand Student Motivations and Ethical Approaches to Academic Ethics with Recommendations for Curricular Change, Virginia M. Miori, Kelly A. Doyle, and Kathleen Campbell.

About the Editor.

Reihe/Serie Contemporary Perspectives in Data Mining
Sprache englisch
Maße 156 x 234 mm
Gewicht 535 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Office Programme Outlook
Mathematik / Informatik Mathematik
Wirtschaft Betriebswirtschaft / Management
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-13 9781623960568 / 9781623960568
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95