Smoothing and Regression – Approaches, Computation and Application
John Wiley & Sons Inc (Hersteller)
9781118150658 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Special features of this book include: * Comprehensive coverage of smoothing and regression with software hints and applications from a wide variety of disciplines * A unified, easy-to-follow format * Contributions from more than 25 leading researchers from around the world * More than 150 illustrations also covering new graphical techniques important for exploratory data analysis and visualization of high-dimensional problems * Extensive end-of-chapter references For professionals and aspiring professionals in statistics, applied mathematics, computer science, and econometrics, as well as for researchers in the applied and social sciences, Smoothing and Regression is a unique and important new resource destined to become one the most frequently consulted references in the field.
MICHAEL G. SCHIMEK, PhD, DPhil, is Professor of Statistics and Biometrics in the Department of Medical Informatics, Statistics, and Documentation at Karl-Franzens-University of Graz, Austria, and Adjunct Professor of Methodology in the Department of Psychology at the University of Vienna, Austria.
Spline Regression (R. Eubank). Variance Estimation and Smoothing-Parameter Selection for Spline Regression (A. van der Linde). Kernel Regression (P. Sarda & P. Vieu). Variance Estimation and Bandwidth Selection for Kernel Regression (E. Herrmann). Spline and Kernel Regression under Shape Restrictions (M. Delecroix & C. Thomas-Agnan). Spline and Kernel Regression for Dependent Data (R. Kohn, et al.). Wavelets for Regression and Other Statistical Problems (G. Nason & B. Silverman). Smoothing Methods for Discrete Data (J. Simonoff & G. Tutz). Local Polynomial Fitting (J. Fan & I. Gijbels). Additive and Generalized Additive Models (M. Schimek & B. Turlach). Multivariate Spline Regression (C. Gu). Multivariate and Semiparametric Kernel Regression (W. Hardle & M. Muller). Spatial-Process Estimates as Smoothers (D. Nychka). Resampling Methods for Nonparametric Regression (E. Mammen). Multidimensional Smoothing and Visualization (D. Scott). Projection Pursuit Regression (S. Klinke & J. Grassmann). Sliced Inverse Regression (T. Kotter). Dynamic and Semiparametric Models (L. Fahrmeir & L. Knorr-Held). Nonparametric Bayesian Bivariate Surface Estimation (M. Smith, et al.). Index.
| Erscheint lt. Verlag | 31.1.2012 |
|---|---|
| Verlagsort | New York |
| Sprache | englisch |
| Maße | 150 x 250 mm |
| Gewicht | 666 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-13 | 9781118150658 / 9781118150658 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |