Kalman Filtering and Neural Networks
Seiten
2001
Wiley-Interscience (Verlag)
978-0-471-36998-1 (ISBN)
Wiley-Interscience (Verlag)
978-0-471-36998-1 (ISBN)
Kalman filtering is a well-established topic in the field of control and signal processing and represents by far the most refined method for the design of neural networks. This book takes a nontraditional nonlinear approach and reflects the fact that most practical applications are nonlinear.
State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.
The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:
An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF)
Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes
The dual estimation problem
Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm
The unscented Kalman filter
Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.
The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:
An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF)
Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes
The dual estimation problem
Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm
The unscented Kalman filter
Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
SIMON HAYKIN, PhD, is Professor of Electrical Engineering at the Communication Research Laboratory of McMaster University in Hamilton, Ontario, Canada.
Preface.
Contributors.
Kalman Filters (S. Haykin).
Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp).
Learning Shape and Motion from Image Sequences (G. Patel, et al.).
Chaotic Dynamics (G. Patel and S. Haykin).
Dual Extended Kalman Filter Methods (E. Wan and A. Nelson).
Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani).
The Unscencted Kalman Filter (E. Wan and R. van der Merwe).
Index.
| Erscheint lt. Verlag | 12.10.2001 |
|---|---|
| Reihe/Serie | Adaptive and Learning Systems for Signal Processing, Communications, and Control Series |
| Sprache | englisch |
| Maße | 162 x 246 mm |
| Gewicht | 544 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Technik ► Elektrotechnik / Energietechnik | |
| ISBN-10 | 0-471-36998-5 / 0471369985 |
| ISBN-13 | 978-0-471-36998-1 / 9780471369981 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20