Infinite-Dimensional Representations of 2-Groups
Seiten
2012
American Mathematical Society (Verlag)
978-0-8218-7284-0 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-7284-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
A “$2$-group'' is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, $2$-groups have representations on “$2$-vector spaces'', which are categories analogous to vector spaces. Unfortunately, Lie $2$-groups typically have few representations on the finite-dimensional $2$-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional $2$-vector spaces called ``measurable categories'' (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie $2$-groups. Here they continue this work.
They begin with a detailed study of measurable categories. Then they give a geometrical description of the measurable representations, intertwiners and $2$-intertwiners for any skeletal measurable $2$-group. They study tensor products and direct sums for representations, and various concepts of subrepresentation. They describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory and study irreducible and indecomposable representations and intertwiners. They also study “irretractable'' representations--another feature not seen in ordinary group representation theory. Finally, they argue that measurable categories equipped with some extra structure deserve to be considered “separable $2$-Hilbert spaces'', and compare this idea to a tentative definition of $2$-Hilbert spaces as representation categories of commutative von Neumann algebras.
They begin with a detailed study of measurable categories. Then they give a geometrical description of the measurable representations, intertwiners and $2$-intertwiners for any skeletal measurable $2$-group. They study tensor products and direct sums for representations, and various concepts of subrepresentation. They describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory and study irreducible and indecomposable representations and intertwiners. They also study “irretractable'' representations--another feature not seen in ordinary group representation theory. Finally, they argue that measurable categories equipped with some extra structure deserve to be considered “separable $2$-Hilbert spaces'', and compare this idea to a tentative definition of $2$-Hilbert spaces as representation categories of commutative von Neumann algebras.
John C. Baez is at University of California, USA. ||Aristide Baratin is at Max Planck Institute for Gravitational Physics,Germany. |Laurent Freidel is at Perimeter Institute for Theoretical Physics, Canada. |Derek K. Wise is at University of Erlangen-Nurnberg, Germany
| Erscheint lt. Verlag | 1.9.2012 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-7284-2 / 0821872842 |
| ISBN-13 | 978-0-8218-7284-0 / 9780821872840 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
a history of modern trigonometry
Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 34,90