Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Calculus for Scientists and Engineers, Single Variable Plus MyLab Math -- Access Card Package - William Briggs, Lyle Cochran, Bernard Gillett

Calculus for Scientists and Engineers, Single Variable Plus MyLab Math -- Access Card Package

Media-Kombination
650 Seiten
2012
Pearson
9780321844569 (ISBN)
CHF 176,40 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Briggs/Cochran is the most successful new calculus series published in the last two decades. The authors’ years of teaching experience resulted in a text that reflects how students generally use a textbook: they start in the exercises and refer back to the narrative for help as needed. The text therefore builds from a foundation of meticulously crafted exercise sets, then draws students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students’ geometric intuition to introduce fundamental concepts, laying a foundation for the rigorous development that follows.

*This book covers chapters single variable topics (chapters 1–12) of Calculus for Scientists and Engineers, by the same authors.

 

0321844564 / 9780321844569 Calculus for Scientists and Engineers, Single Variable plus MyMathLab Student Access Kit

Package consists of:   

0321431308 / 9780321431301 MyMathLab/MyStatLab -- Glue-in Access Card

0321654064 / 9780321654069 MyMathLab Inside Star Sticker

032182671X / 9780321826718 Calculus for Scientists and Engineers, Single Variable

 

William Briggs has been on the mathematics faculty at the University of Colorado at Denver for twenty-three years. He received his BA in mathematics from the University of Colorado and his MS and PhD in applied mathematics from Harvard University. He teaches undergraduate and graduate courses throughout the mathematics curriculum with a special interest in mathematical modeling and differential equations as it applies to problems in the biosciences. He has written a quantitative reasoning textbook, Using and Understanding Mathematics; an undergraduate problem solving book, Ants, Bikes, and Clocks; and two tutorial monographs, The Multigrid Tutorial and The DFT: An Owner’s Manual for the Discrete Fourier Transform. He is the Society for Industrial and Applied Mathematics (SIAM) Vice President for Education, a University of Colorado President’s Teaching Scholar, a recipient of the Outstanding Teacher Award of the Rocky Mountain Section of the Mathematical Association of America (MAA), and the recipient of a Fulbright Fellowship to Ireland.   Lyle Cochran is a professor of mathematics at Whitworth University in Spokane, Washington. He holds BS degrees in mathematics and mathematics education from Oregon State University and a MS and PhD in mathematics from Washington State University. He has taught a wide variety of undergraduate mathematics courses at Washington State University, Fresno Pacific University, and, since 1995, at Whitworth University. His expertise is in mathematical analysis, and he has a special interest in the integration of technology and mathematics education. He has written technology materials for leading calculus and linear algebra textbooks including the Instructor’s Mathematica Manual for Linear Algebra and Its Applications by David C. Lay and the Mathematica Technology Resource Manual for Thomas’ Calculus. He is a member of the MAA and a former chair of the Department of Mathematics and Computer Science at Whitworth University.   Bernard Gillett is a Senior Instructor at the University of Colorado at Boulder; his primary focus is undergraduate education. He has taught a wide variety of mathematics courses over a twenty-year career, receiving five teaching awards in that time. Bernard authored a software package for algebra, trigonometry, and precalculus; the Student’s Guide and Solutions Manual and the Instructor’s Guide and Solutions Manual for Using and Understanding Mathematics by Briggs and Bennett; and the Instructor’s Resource Guide and Test Bank for Calculus and Calculus: Early Transcendentals by Briggs, Cochran, and Gillett. Bernard is also an avid rock climber and has published four climbing guides for the mountains in and surrounding Rocky Mountain National Park.

1. Functions

1.1 Review of functions

1.2 Representing functions

1.3 Trigonometric functions and their inverses

Review

 

2. Limits

2.1 The idea of limits

2.2 Definitions of limits

2.3 Techniques for computing limits

2.4 Infinite limits

2.5 Limits at infinity

2.6 Continuity

2.7 Precise definitions of limits

Review

 

3. Derivatives

3.1 Introducing the derivative

3.2 Rules of differentiation

3.3 The product and quotient rules

3.4 Derivatives of trigonometric functions

3.5 Derivatives as rates of change

3.6 The Chain Rule

3.7 Implicit differentiation

3.8 Derivatives of inverse trigonometric functions

3.9 Related rates

Review

 

4. Applications of the Derivative

4.1 Maxima and minima

4.2 What derivatives tell us

4.3 Graphing functions

4.4 Optimization problems

4.5 Linear approximation and differentials

4.6 Mean Value Theorem

4.7 L'Hôpital's Rule

4.8 Newton's method

4.9 Antiderivatives

Review

 

5. Integration

5.1 Approximating areas under curves

5.2 Definite integrals

5.3 Fundamental Theorem of Calculus

5.4 Working with integrals

5.5 Substitution rule

Review

 

6. Applications of Integration

6.1 Velocity and net change

6.2 Regions between curves

6.3 Volume by slicing

6.4 Volume by shells

6.5 Length of curves

6.6 Surface area

6.7 Physical applications

6.8 Hyperbolic functions

Review

 

7. Logarithmic and Exponential Functions

7.1 Inverse functions

7.2 The natural logarithm and exponential functions

7.3 Logarithmic and exponential functions with general bases

7.4 Exponential models

7.5 Inverse trigonometric functions

7.6 L'Hôpital's rule and growth rates of functions

Review

 

8. Integration Techniques

8.1 Basic approaches

8.2 Integration by parts

8.3 Trigonometric integrals

8.4 Trigonometric substitutions

8.5 Partial fractions

8.6 Other integration strategies

8.7 Numerical integration

8.8 Improper integrals

Review

 

9. Differential Equations

9.1 Basic ideas

9.2 Direction fields and Euler's method

9.3 Separable differential equations

9.4 Special first-order differential equations

9.5 Modeling with differential equations

Review

 

10. Sequences and Infinite Series

10.1 An overview

10.2 Sequences

10.3 Infinite series

10.4 The Divergence and Integral Tests

10.5 The Ratio, Root, and Comparison Tests

10.6 Alternating series

Review

 

11. Power Series

11.1 Approximating functions with polynomials

11.2 Properties of power series

11.3 Taylor series

11.4 Working with Taylor series

Review

 

12. Parametric and Polar Curves

12.1 Parametric equations

12.2 Polar coordinates

12.3 Calculus in polar coordinates

12.4 Conic sections

Review

Erscheint lt. Verlag 5.7.2012
Sprache englisch
Maße 213 x 267 mm
Gewicht 1678 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-13 9780321844569 / 9780321844569
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich