Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fatou Type Theorems - F. Di Biase

Fatou Type Theorems

Maximal Functions and Approach Regions

(Autor)

Buch | Softcover
154 Seiten
2012 | 1998 ed.
Springer-Verlag New York Inc.
9781461274964 (ISBN)
CHF 74,85 inkl. MwSt
A basic principle governing the boundary behaviour of holomorphic func­ tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad­ mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half­ spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor­ phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.

I Background.- 1 Prelude.- 2 Preliminary Results.- 3 The Geometric Contexts.- II Exotic Approach Regions.- 4 Approach Regions for Trees.- 5 Embedded Trees.- 6 Applications.- Notes.- List of Figures.- Guide to Notation.

Reihe/Serie Progress in Mathematics ; 147
Zusatzinfo XII, 154 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-13 9781461274964 / 9781461274964
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95