The Bochner-Martinelli Integral and Its Applications
Springer Basel (Verlag)
978-3-0348-9904-8 (ISBN)
1 The Bochner-Martinelli Integral.- 1 The Bochner-Martinelli integral representation.- 2 Boundary behavior.- 3 Jump theorems.- 4 Boundary behavior of derivatives.- 5 The Bochner-Martinelli integral in the ball.- 2 CR-Functions Given on a Hypersurface.- 6 Analytic representation of CR-functions.- 7 The Hartogs-Bochner extension theorem.- 8 Holomorphic extension from a part of the boundary.- 9 Removable singularities of CR-functions.- 10 Analogue of Riemann's theorem for CR-functions.- 3 Distributions Given on a Hypersurface.- 11 Harmonic representation of distributions.- 12 Multiplication of distributions.- 13 The generalized Fourier transform.- 4 The$$bar partial $$-Neumann Problem.- 14 Statement of the$$bar partial $$-Neumann problem.- 15 Functions represented by Bochner-Martinelli.- 16 Iterates of the Bochner-Martinelli integral.- 17 Uniqueness theorem for the $$bar partial $$-Neumann problem.- 18 Solvability of the $$bar partial $$-Neumann problem.- 19 Integral representation in the ball.- 5 Some Applications and Open Problems.- 20 Multidimensional logarithmic residues.- 21 Multidimensional analogues of Carleman's formula.- 22 The Poincaré-Bertrand formula.- 23 Problems on holomorphic extension.- 6 Holomorphic Extension of Functions.- 24 Holomorphic extension of hyperfunctions.- 25 Holomorphic extension of functions.- 26 The Cauchy problem for holomorphic functions.
| Erscheint lt. Verlag | 8.10.2011 |
|---|---|
| Zusatzinfo | XII, 308 p. |
| Verlagsort | Basel |
| Sprache | englisch |
| Maße | 170 x 244 mm |
| Gewicht | 560 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Analysis • Complex Analysis • Derivative • holomorphic function • Integral • Integration |
| ISBN-10 | 3-0348-9904-1 / 3034899041 |
| ISBN-13 | 978-3-0348-9904-8 / 9783034899048 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich