Was ist Mathematik?
Springer Berlin (Verlag)
978-3-540-99519-7 (ISBN)
2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer GroBe, so kann es vor kommen, daB a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall konnen wir das MaB der Strecke b dUrch das von a ausdrucken, indem wir sagen, daB die Lange von b das r-fache der Lange von a ist. Oder es kann sich zeigen, daB man, wenn auch kein ganzes Vielfaches von a genau gleich b ist, doch a in, sagen wir, n gleiche Strecken von der Lange ajn teilen kann, so daB ein ganzes Vielfaches m der Strecke ajn gleich b wird: b=!!!...-a.
Erstes Kapitel Die natürlichen Zahlen.- Ergänzung zu Kapitel I. Zahlentheorie.- Zweites Kapitel Das Zahlensystem der Mathematik.- Ergänzung zu Kapitel II. Mengenalgebra (Boolesche Algebra).- Drittes Kapitel Geometrische Konstruktionen. Die Algebra der Zahlkörper.- Zahlkörper.- Viertes Kapitel Projektive Geometrie. Axiomatik. Nichteuklidische Geometrien.- 1. Einleitung.- 2. Grundlegende Begriffe.- 3. Das Doppel Verhältnis.- 4. Parallelität und Unendlichkeit.- 5. Anwendungen.- 6. Analytische Darstellung.- 7. Aufgaben über Konstruktionen mit dem Lineal allein.- 8. Kegelschnitte und Flächen zweiter Ordnung.- 9. Axiomatik und nichteuklidische Geometrie.- Anhang. Geometrie in mehr als drei Dimensionen.- Fünftes Kapitel Topologie.- Sechstes Kapitel Funktionen und Grenzwerte.- Ergänzung zu Kapitel VI. Weitere Beispiele für Grenzwerte und Stetigkeit.- Siebentes Kapitel Maxima und Minima.- Achtes Kapitel Die Infinitesimalrechnung.- Ergänzung zu Kapitel VIII.- Ergänzungen, Probleme und Übungsaufgaben.- Arithmetik und Algebra.- Analytische Geometrie.- Geometrische Konstruktionen.- Projektive und nichteuklidische Geometrie.- Topologie.- Funktionen, Grenzwerte und Stetigkeit.- Maxima und Minima.- Infinitesimalrechnung.- Integrationstechnik.- Hinweise auf weiterführende Literatur.- Namen- und Sachverzeichnis.
| Erscheint lt. Verlag | 1.10.1993 |
|---|---|
| Zusatzinfo | XXII, 402 S. |
| Verlagsort | Berlin |
| Sprache | deutsch |
| Maße | 155 x 235 mm |
| Gewicht | 644 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Schlagworte | Ableitung • Algebra • Arithmetik • Beweis • Cantor • Endlichkeit • Funktion • Geometrie • Gleichung • Grenzwert • Mathematik • Rechnen • Topologie • Variable • Zählen |
| ISBN-10 | 3-540-99519-6 / 3540995196 |
| ISBN-13 | 978-3-540-99519-7 / 9783540995197 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich