Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Spaces of Holomorphic Functions in the Unit Ball -  Kehe Zhu

Spaces of Holomorphic Functions in the Unit Ball (eBook)

(Autor)

eBook Download: PDF
2006 | 1. Auflage
278 Seiten
Springer New York (Verlag)
978-0-387-27539-0 (ISBN)
Systemvoraussetzungen
65,44 inkl. MwSt
(CHF 63,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book presents a modern theory of holomorphic function spaces in the open unit ball. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing proofs in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group.
The book presents a modern theory of holomorphic function spaces in the open unit ball. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing proofs in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group.
Erscheint lt. Verlag 22.3.2006
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
ISBN-10 0-387-27539-8 / 0387275398
ISBN-13 978-0-387-27539-0 / 9780387275390
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich