Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture - Peter B. Gilkey, John V Leahy, Jeonghyeong Park

Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture

Buch | Hardcover
290 Seiten
1999
Crc Press Inc (Verlag)
978-0-8493-8277-2 (ISBN)
CHF 299,95 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Explores the theory and research on the form valued Laplacian in the class of smooth compact manifolds without boundary. This book explores eigenform preservation in respect to pull back. It also examines the Bochner Laplacian and the spinor Laplacian in suitable settings.
This cutting-edge, standard-setting text explores the spectral geometry of Riemannian submersions. Working for the most part with the form valued Laplacian in the class of smooth compact manifolds without boundary, the authors study the relationship-if any-between the spectrum of Dp on Y and Dp on Z, given that Dp is the p form valued Laplacian and pi: Z ® Y is a Riemannian submersion.

After providing the necessary background, including basic differential geometry and a discussion of Laplace type operators, the authors address rigidity theorems. They establish conditions that ensure that the pull back of every eigenform on Y is an eigenform on Z so the eigenvalues do not change, then show that if a single eigensection is preserved, the eigenvalues do not change for the scalar or Bochner Laplacians. For the form valued Laplacian, they show that if an eigenform is preserved, then the corresponding eigenvalue can only increase. They generalize these results to the complex setting as well. However, the spinor setting is quite different. For a manifold with non-trivial boundary and imposed Neumann boundary conditions, the result is surprising-the eigenvalues can change.
Although this is a relatively rare phenomenon, the authors give examples-a circle bundle or, more generally, a principal bundle with structure group G where the first cohomology group H1(G;R) is non trivial. They show similar results in the complex setting, show that eigenvalues can decrease in the spinor setting, and offer a list of unsolved problems in this area.
Moving to some related topics involving questions of positive curvature, for the first time in mathematical literature the authors establish a link between the spectral geometry of Riemannian submersions and the Gromov-Lawson conjecture.
Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture addresses a hot research area and promises to set a standard for the field. Researchers and applied mathematicians interested in mathematical physics and relativity will find this work both fascinating and important.

Peter B. Gilkey, John V. Leahy, both University of Oregon, Eugene, USA. JeongHyeong Park, Sungkyunkwan University.

Elliptic Operators. Differential Geometry. Positive Curvature. Spectral Geometry of Riemannian Submersions. References. Notation. Index.


NTI/Sales Copy

Erscheint lt. Verlag 27.7.1999
Reihe/Serie Studies in Advanced Mathematics
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 594 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8493-8277-7 / 0849382777
ISBN-13 978-0-8493-8277-2 / 9780849382772
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
a history of modern trigonometry

von Glen Van Brummelen

Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 34,90