$n$-Harmonic Mappings Between Annuli
The Art of Integrating Free Lagrangians
Seiten
2012
American Mathematical Society (Verlag)
978-0-8218-5357-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-5357-3 (ISBN)
The central theme of this paper is the variational analysis of homeomorphisms $h: {/mathbb X} /overset{/textnormal{/tiny{onto}}}{/longrightarrow} {/mathbb Y}$ between two given domains ${/mathbb X}, {/mathbb Y} /subset {/mathbb R}^n$. The authors look for the extremal mappings in the Sobolev space ${/mathscr W}^{1,n}({/mathbb X},{/mathbb Y})$ which minimize the energy integral ${/mathscr E}_h=/int_{{/mathbb X}} /,|/!|/, Dh(x) /,|/!|/,^n/, /textrm{d}x$. Because of the natural connections with quasiconformal mappings this $n$-harmonic alternative to the classical Dirichlet integral (for planar domains) has drawn the attention of researchers in Geometric Function Theory. Explicit analysis is made here for a pair of concentric spherical annuli where many unexpected phenomena about minimal $n$-harmonic mappings are observed. The underlying integration of nonlinear differential forms, called free Lagrangians, becomes truly a work of art.
| Erscheint lt. Verlag | 1.7.2012 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 300 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-5357-0 / 0821853570 |
| ISBN-13 | 978-0-8218-5357-3 / 9780821853573 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Anwendungen in Natur und Technik
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 55,95