Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Concentration Compactness for Critical Wave Maps - Joachim Krieger, Wilhelm Schlag

Concentration Compactness for Critical Wave Maps

Buch | Hardcover
VI, 484 Seiten
2012 | 1., Aufl.
EMS Press (Verlag)
978-3-03719-106-4 (ISBN)
CHF 138,60 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Wave maps are the simplest wave equations taking their values in a Riemannian manifold (M,g). Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric g. By Noether's theorem, symmetries of the Lagrangian imply conservation laws for
wave maps, such as conservation of energy.

In coordinates, wave maps are given by a system of semillinear wave equations. Over the past 20 years important methods have emerged which address the problem of local and global wellposedness of this system. Due to weak dispersive effects, wave maps defined on Minkowski spaces of low dimensions present particular technical difficulties. This class of wave maps has the additional important feature of being energy critial, which refers to the fact that the energy scales exactly like the equation.

Around 2000 Daniel Tataru and Terence Tao, building on earlier work of Klainerman–Machedon, proved that smooth data of small energy lead to global smooth solutions for wave maps from 2+1 dimensions into target manifolds satisfying some natural conditions. In contrast, for large data, singularities may occur in finite time for M =S^2 as target. This monograph establishes that for H as target the wave map evolution of any smooth data exists globally as a smooth function.

While we restrict ourselves to the hyperbolic plane as target the implementation of the concentration-compactness method, the most challenging piece of this exposition, yields more detailed information on the solution. This monograph will be of interest to experts in nonlinear dispersive equations, in particular to
those working on geometric evolution equations.
Erscheint lt. Verlag 6.2.2012
Reihe/Serie EMS Monographs in Mathematics
Sprache englisch
Maße 165 x 235 mm
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Bahouri–Gérard decomposition • concentration compactness • Energy critical wave equations • Energy critical wave equations, wave maps, concentration compactness, Bahouri–Gérarddecomposition, Kenig–Merle method, hyperbolic plane • hyperbolic plane • Kenig–Merle method • wave maps
ISBN-10 3-03719-106-6 / 3037191066
ISBN-13 978-3-03719-106-4 / 9783037191064
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich