Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Recommender Systems - Sophie Ahrens

Recommender Systems

(Autor)

Buch | Softcover
364 Seiten
2012 | 2. Auflage
epubli (Verlag)
9783844208238 (ISBN)
CHF 55,85 inkl. MwSt
  • Titel leider nicht mehr lieferbar
  • Artikel merken
5 empirical studies, explanatory framework and management tool. Dissertation LMU München.
How to identify the most relevant recommender systems?Recommender systems, such as "customers who bought this item also bought...", are omnipresent in the internet and play a vital role in the online consumer purchase decision. Single web pages normally offer many recommender systems in parallel. The vast variety of in-use decision making systems is driven by sheer technological possibility.Space constraints emerge with a continuously increasing number of available recommender systems and are enforced by the smaller screen sizes on mobile devices. The crucial question becomes - how to implement only the most relevant recommender systems - yet the question still waits for a comprehensive answer.This dissertation takes up the challenge. It turns away from the software engineer perspective of creating one-size-fits-all solutions and takes up the business perspective of managing choice instead. Questions addressed are: How relevant are available recommender systems to my customers? At what point in the purchase is each needed most? What should I deploy to serve my customers best?Sophie Ahrens shows that recommender system relevance is influenced by the underlying technology, purchasing context, and user characteristics in decision making. She delivers a framework that matches recommender systems and customer needs to increase online sales. Her book starts with a thorough literature review on recommender system, world-of-mouth, and consumer behavior research. It then presents a typology to classify recommender systems. A conceptual framework is developed to explain recommender system relevance drawing on theories pertaining to technology acceptance, consumer behavior, interpersonal persuasion and information processing. Five empirical studies employing innovative designs and variousdata sources test and support its explanatory power. Findings are conveyed into a management tool to guide the optimal choice of recommender systems in practice.

2006-2010 Promotion zum Dr. oec publ., Ludwig-Maximilians-Universität (LMU) München und wissenschaftliche Mitarbeiterin; Columbia Business School, New York. 2007-2009 Postgraduales Studium betriebswirtschaftliche Forschung, Master of Business Research, LMU München. 2005-2007 Master Studium Technologiemanagement, Center for Digital Economy and Management (CDTM) München. 2000-2006 Diplom Betriebswirtschaftslehre, LMU München und Università degli Studi di Firenze, Florenz. Seit 2005 nebenberuflich in der IT-, Medien- und VC-Branche tätig.

Erscheint lt. Verlag 19.1.2012
Sprache deutsch
Maße 148 x 210 mm
Gewicht 554 g
Themenwelt Mathematik / Informatik Informatik Web / Internet
Schlagworte E-Commerce • Empfehlungssysteme • Internet • LMU München • recommender agent • Recommender System • WoM • word-of-mouth
ISBN-13 9783844208238 / 9783844208238
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich