Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Reinforcement Learning

State-of-the-Art
Buch | Hardcover
XXXIV, 638 Seiten
2012
Springer Berlin (Verlag)
978-3-642-27644-6 (ISBN)
CHF 559,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade.

The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research.

Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge
representation in reinforcement learning settings.

Continous State and Action Spaces.- Relational and First-Order Knowledge Representation.- Hierarchical Approaches.- Predictive Approaches.- Multi-Agent Reinforcement Learning.- Partially Observable Markov Decision Processes (POMDPs).- Decentralized POMDPs (DEC-POMDPs).- Features and Function Approximation.- RL as Supervised Learning (or batch learning).- Bounds and complexity.- RL for Games.- RL in Robotics.- Policy Gradient Techniques.- Least Squares Value Iteration.- Models and Model Induction.- Model-based RL.- Transfer Learning in RL.- Using of and extracting Knowledge in RL.- Biological or Psychological Background.- Evolutionary Approaches.- Closing chapter, prospects, future issues.

Erscheint lt. Verlag 14.3.2012
Reihe/Serie Adaptation, Learning, and Optimization
Zusatzinfo XXXIV, 638 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1119 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Artificial Intelligence • Computational Intelligence • Decision-Theoretic Planning • Dynamic Programming • Künstliche Intelligenz • machine learning • Markov Decision Processes • optimal control • Reinforcement Learning • Utility-Based Learning
ISBN-10 3-642-27644-X / 364227644X
ISBN-13 978-3-642-27644-6 / 9783642276446
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20