Visualization for Information Retrieval (eBook)
XVIII, 294 Seiten
Springer Berlin (Verlag)
978-3-540-75148-9 (ISBN)
Information visualization offers a way to reveal hidden patterns in a visual presentation and allows users to seek information from a visual perspective. Readers of this book will gain an in-depth understanding of the current state of information retrieval visualization. They will be introduced to existing problems along with technical and theoretical findings. The book also provides practical details for the implementation of an information retrieval visualization system.
Foreword 6
Preface 7
Preface 7
Contents 10
Chapter 1 Information Retrieval and Visualization 15
1.1 Visualization 17
1.2 Information retrieval 18
1.2.1 Browsing vs. query searching 19
1.2.2 Information at micro-level and macro-level 21
1.2.3 Spatial characteristics of information space 22
1.2.4 Spatial characteristics of browsing 24
1.3 Perceptual and cognitive perspectives of visualization 25
1.3.1 Perceptual perspective 25
1.3.2 Cognitive perspective 26
1.4 Visualization for information retrieval 27
1.4.1 Rationale 27
1.4.2 Three information retrieval visualization paradigms 30
1.4.3 Procedures of establishing an information retrieval visualization model 30
1.5 Summary 34
Chapter 2 Information Retrieval Preliminaries 35
2.1 Vector space model 36
2.2 Term weighting methods 38
2.2.1 Stop words 39
2.2.2 Inverse document frequency 39
2.2.3 The Salton term weighting method 40
2.2.4 Another term weighting method 40
2.2.5 Probability term weighting method 40
2.3 Similarity measures 41
2.3.1 Inner product similarity measure 42
2.3.2 Dice co-efficient similarity measure 42
2.3.3 The Jaccard co-efficient similarity measure 42
2.3.4 Overlap co-efficient similarity measure 43
2.3.5 Cosine similarity measure 43
2.3.6 Distance similarity measure 44
2.3.7 Angle-distance integrated similarity measure 46
2.3.8 The Pearson r correlation measure 47
2.4 Information retrieval (evaluation) models 48
2.4.1 Direction-based retrieval (evaluation) model 48
2.4.2 Distance-based retrieval (evaluation) model 49
2.4.3 Ellipse retrieval (evaluation) model 50
2.4.4 Conjunction retrieval (evaluation) model 50
2.4.5 Disjunction evaluation model 52
2.4.6 The Cassini oval retrieval (evaluation) model 53
2.5 Clustering algorithms 54
2.5.1 Non- hierarchical clustering algorithm 56
2.5.2 Hierarchical clustering algorithm 57
2.6 Evaluation of retrieval results 59
2.7 Summary 60
Chapter 3 Visualization Models for Multiple Reference Points 61
3.1 Multiple reference points 62
3.2 Model for fixed multiple reference points 63
3.3 Models for movable multiple reference points 66
3.3.1 Description of the original VIBE algorithm 66
3.3.2 Discussions about the model 73
3.4 Model for automatic reference point rotation 80
3.4.1 Definition of the visual space 81
3.4.2 Rotation of a reference point 83
3.5 Implication of information retrieval 84
3.6 Summary 86
Chapter 4 Euclidean Spatial Characteristic Based Visualization Models 87
4.1 Euclidean space and its characteristics 87
4.2 Introduction to the information retrieval evaluation models 89
4.3 The distance-angle-based visualization model 93
4.4 The angle-angle-based visualization model 102
4.5 The distance-distance-based visualization model 111
4.6 Summary 118
Chapter 5 Kohonen Self-Organizing Map– An Artificial Neural Network 120
5.1 Introduction to neural networks 120
5.1.1 Definition of neural network 121
5.1.2 Characteristics and structures of neuron network 122
5.2 Kohonen self-organizing maps 124
5.2.1 Kohonen self-organizing map structures 125
5.2.2 Learning processing of SOM algorithm 126
5.2.3 Feature map labeling 132
5.2.4 The SOM algorithm description 133
5.3 Implication of SOM in information retrieval 134
5.4 Summary 137
Chapter 6 Pathfinder Associative Network 139
6.1 Pathfinder associative network properties and descriptions 140
6.2 Implications on information retrieval 149
6.2.1 Author co-citation analysis 149
6.2.2 Term associative network 151
6.2.3 Hyperlink 152
6.2.4 Search in pathfinder associative networks 153
6.3 Summary 154
Chapter 7 Multidimensional Scaling 155
7.1 MDS analysis method descriptions 156
7.2 Implications of MDS techniques for information retrieval 170
7.3 Summary 175
Chapter 8 Internet Information Visualization 176
8.1 Introduction 176
8.2 Internet information visualization 182
8.2.1 Visualization of internet information structure 183
8.2.2 Internet information seeking visualization 191
8.2.3 Visualization of web traffic information 194
8.2.4 Discussion history visualization 199
8.3 Summary 200
Chapter 9 Ambiguity in Information Visualization 201
9.1 Ambiguity and its implication in information visualization 202
9.2 Ambiguity analysis in information retrieval visualization models 204
9.2.1. Ambiguity in the Euclidean spatial characteristic based information models 204
9.2.2 Ambiguity in the multiple reference point based information visualization models 212
9.2.3 Ambiguity in the pathfinder network 217
9.2.4 Ambiguity in SOM 219
9.2.5 Ambiguity in MDS 220
9.3 Summary 221
Chapter 10 The Implication of Metaphors in Information Visualization 224
10.1 Definition, basic elements, and characteristics of a metaphor 224
10.2 Cognitive foundation of metaphors 227
10.3 Mental models, metaphors, and human computer interaction 228
10.4 Metaphors in information visualization retrieval 232
10.4.1 Rationales for using metaphors 232
10.4.2 Metaphorical information retrieval visualization environments 234
10.5 Procedures and principles for metaphor application 10.5.1 Procedure for metaphor application 240
10.5.2 Guides for designing a good metaphorical visual information retrieval environment 241
10.6 Summary 245
Chapter 11 Benchmarks and Evaluation Criteria for Information Retrieval Visualization 247
11.1 Information retrieval visualization evaluation 247
11.2 Benchmarks and evaluation standards 251
11.3 Summary 261
Chapter 12 Afterthoughts 263
12.1 Introduction 263
12.2 Comparisons of the introduced visualization models 265
12.3 Issues and challenges 268
12.4 Summary 276
Bibliography 277
Index 294
| Erscheint lt. Verlag | 24.11.2007 |
|---|---|
| Reihe/Serie | The Information Retrieval Series | The Information Retrieval Series |
| Zusatzinfo | XVIII, 294 p. 72 illus., 1 illus. in color. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Schlagworte | Digital Libraries • Information Retrieval • information system • Information Visualization • Neural networks • organization • Visualization |
| ISBN-10 | 3-540-75148-3 / 3540751483 |
| ISBN-13 | 978-3-540-75148-9 / 9783540751489 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich