Design und Implementierung eines Multi-Classifier-Systems (MCS) für die Erkennung von gerendertem Text (eBook)
Diese Arbeit befasst sich mit dem Design und der Implementierung eines Multi-Classifier-Systems, das mehrere verschiedene Klassifikatoren zur Erkennung gerenderter Schriftzeichen kombiniert. Das MCS wird schließlich in das existierende OCR-System integriert, um dessen Effektivität zu verbessern.
Kapitel 2 befasst sich zunächst mit Analyse und Beurteilung des vorliegenden OCR-Systems. Kapitel 2.1 identifiziert hierzu konkrete Eigenschaften gerenderter Texte und die damit einhergehenden
Herausforderungen bei der automatischen Texterkennung. Kapitel 2.2 stellt das bestehende OCR-Systems zur Erkennung von gerendertem Text vor, dessen Komponenten in Kapitel 2.3 analysiert werden, um das weitere Vorgehen im Hinblick auf das Ziel dieser Arbeit zu planen.
Kapitel 3 befasst sich mit der Schaffung der für die Entwicklung des MCS notwendigen Voraussetzungen. Das betrifft insbesondere die dem OCR-System zu Grunde liegenden Trainingsdaten, auf deren Basis es entwickelt und getestet wurde. In Kapitel 3.1 wird dafür zun¨achst eine Kategorisierung von gerendertem Text vorgenommen, anhand der sich die Zusammensetzung bereits existierender Trainingsdaten untersuchen l¨asst. Damit die Trainingsdaten in einem sinnvollen Format vorliegen, wurde die Datenhaltung ¨uberarbeitet. Kapitel 3.2 stellt diese überarbeitung vor. Die identifizierten Kategorien werden dann herangezogen, um in Kapitel 3.3 eine strategische Erweiterung der Datenbasis vorzunehmen.
Kapitel 4 leitet zum Kern der Arbeit über: Auf Basis der Trainingsdaten werden verschiedene Klassifikatoren konstruiert. Um qualifizierte Klassifikatoren konstruieren zu können, ist das
Vorhandensein geeigneter Merkmale entscheidend, anhand der sich die Schriftzeichen klassifizieren lassen. Kapitel 4.1 identifiziert solche Merkmale und konstruiert auf deren Grundlage eine Reihe
von Klassifikatoren. Kapitel 5 befasst sich schließlich mit einer gruppenweisen Kombination der konstruierten Klassifikatoren,
um durch Ausnutzung der Vorteile verschiedener Klassifikatoren einen positiven Beitrag zur Erhöhung der Erkennungsgenauigkeit zu erhalten und somit die Effektivität des bestehenden OCR-Systems zu verbessern.
| Erscheint lt. Verlag | 4.11.2008 |
|---|---|
| Verlagsort | München |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| Schlagworte | Design • gerenderter_text • gerenderter Text • Implementierung • MCS • multi_classifier_system • Multi-Classifier-System • OCR • Texterkennung |
| ISBN-10 | 3-640-20083-7 / 3640200837 |
| ISBN-13 | 978-3-640-20083-2 / 9783640200832 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich