Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-body Type Problems
Seiten
1999
American Mathematical Society (Verlag)
978-0-8218-0873-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-0873-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
A study of the critical points at infinity and of the topology of their stable and unstable manifolds.
In this work, the author examines the following: When the Hamiltonian system $m_i /ddot{q}_i + (/partial V//partial q_i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),/; /forall t /in /mathfrak R$ (where $q_{i} /in /mathfrak R^{/ell}$, $/ell /ge 3$, $1 /le i /le n$, $q = (q_{1},...,q_{n})$ and $V = /sum V_{ij}(t,q_{i}-q_{j})$ with $V_{ij}(t,/xi)$ $T$-periodic in $t$ and singular in $/xi$ at $/xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.
In this work, the author examines the following: When the Hamiltonian system $m_i /ddot{q}_i + (/partial V//partial q_i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),/; /forall t /in /mathfrak R$ (where $q_{i} /in /mathfrak R^{/ell}$, $/ell /ge 3$, $1 /le i /le n$, $q = (q_{1},...,q_{n})$ and $V = /sum V_{ij}(t,q_{i}-q_{j})$ with $V_{ij}(t,/xi)$ $T$-periodic in $t$ and singular in $/xi$ at $/xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.
Introduction Breakdown of the Palais-Smale condition Morse Lemma near infinity A modified functional for the 4-body problem Retraction theorem and related results for the 4-body problem Generalization of the n-body problem.
| Erscheint lt. Verlag | 30.3.1999 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-0873-7 / 0821808737 |
| ISBN-13 | 978-0-8218-0873-3 / 9780821808733 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95