Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-body Type Problems

Buch | Softcover
658 Seiten
1999
American Mathematical Society (Verlag)
978-0-8218-0873-3 (ISBN)
CHF 81,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
A study of the critical points at infinity and of the topology of their stable and unstable manifolds.
In this work, the author examines the following: When the Hamiltonian system $m_i /ddot{q}_i + (/partial V//partial q_i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),/; /forall t /in /mathfrak R$ (where $q_{i} /in /mathfrak R^{/ell}$, $/ell /ge 3$, $1 /le i /le n$, $q = (q_{1},...,q_{n})$ and $V = /sum V_{ij}(t,q_{i}-q_{j})$ with $V_{ij}(t,/xi)$ $T$-periodic in $t$ and singular in $/xi$ at $/xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.

Introduction Breakdown of the Palais-Smale condition Morse Lemma near infinity A modified functional for the 4-body problem Retraction theorem and related results for the 4-body problem Generalization of the n-body problem.

Erscheint lt. Verlag 30.3.1999
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-0873-7 / 0821808737
ISBN-13 978-0-8218-0873-3 / 9780821808733
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich