Direct and Large-Eddy Simulation VII (eBook)
IV, 646 Seiten
Springer Netherland (Verlag)
978-90-481-3652-0 (ISBN)
After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003 and Poiters in 2005, the 7th Workshop, DLES7, will be held in Trieste, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this latest workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field should once again be a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.
After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003 and Poiters in 2005, the 7th Workshop, DLES7, will be held in Trieste, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this latest workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field should once again be a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.
Direct and Large-Eddy Simulation VII 2
Preface 6
Part I Fundamentals 18
Wall-Modeled Large-Eddy Simulations: Present Status and Prospects 19
1 Statement of the problem 19
2 Near-wall modelling 20
3 Sources of error in WMLES 22
4 Conclusions 26
References 27
A Study of the Influence of the Reynolds Number on Jet Self-Similarity Using Large-Eddy Simulation 29
1 Introduction 29
2 Simulation parameters 30
3 Results 31
4 Conclusion 34
References 34
Direct Numerical Simulation of Fractal-Generated Turbulence 35
1 Introduction 35
2 Numerical methods 35
3 The fractal square grid 36
4 Results 37
5 Conclusion 40
References 41
Turbulent Oscillating Channel Flow Subjected to Wind Stress 42
1 Introduction 42
2 Problem description 43
3 Mean velocity 44
4 Structures of the turbulent flow 45
5 Conclusion 46
References 48
DNS of a Periodic Channel Flow with IsothermalAblative Wall 49
1 Introduction 49
2 Results 51
3 Conclusion 54
References 55
Diagnostic Properties of Structure Tensors in Turbulent Flows 56
1 Introduction 56
1.1 Definitions 56
2 Results 57
3 Conclusions 61
References 61
Development of Brown–Roshko Structures in the Mixing Layer Behind a Splitter Plate 63
1 Introduction 63
2 Methodology 64
3 Results 65
4 Conclusion 67
References 68
DNS of Spatially-Developing Three-Dimensional Turbulent Boundary Layers 69
1 Introduction and flow configuration 69
2 Results 70
3 Conclusions 74
References 74
Direct Numerical Simulation and Experimental Results of a Turbulent Channel Flow with Pin Fins Array 76
1 Introduction 76
2 Experimental set up 77
3 Numerical procedure 77
4 Results 78
5 Conclusions 81
References 81
New Experimental Results for a LES Benchmark Case 82
1 Introduction 82
2 Experimental setup 83
3 Velocity measurements 84
3.1 PIV measurements 84
3.2 LDA measurements 84
4 Conducted experiments 85
5 Conclusions 87
References 87
Direct Computation of the Sound Radiated by Shear Layers Using Upwind Compact Schemes 88
1 Introduction 88
2 Numerical techniques 89
3 Results and comments 90
4 Discussion and conclusion 91
References 93
DNS of Orifice Flow with Turbulent Inflow Conditions 94
1 Introduction 94
2 Computational approach 94
3 Results 96
4 Conclusions 97
References 97
The Mean Flow Profile of Wall-Bounded Turbulence and Its Relation to Turbulent Flow Topology 98
1 Introduction 98
2 Theory 99
3 Phenomenology 100
4 Conclusion 100
References 101
Large Eddy Simulation of a Rectangular Turbulent Jet in Crossflow 102
1 Numerical details 102
2 Boundary conditions 103
2.1 Jet flow 103
2.2 Crossflow 103
3 Results and discussion 104
3.1 Instantaneous flow field and vortex structures 104
3.2 Jet inflow conditions effect 104
4 Conclusion 105
References 105
Numerical Simulation of a 2D Starting-Plume Cloud-Flow 107
1 Introduction 107
2 Simulation details 107
3 Code validation 108
4 Results 109
5 Conclusions 110
References 110
Part II Methodologies and Modelling Techniques 111
Variational Multiscale Theory of LES Turbulence Modeling 112
1 Variational multiscale formulation of the incompressible Navier–Stokes equations 112
1.1 Incompressible Navier–Stokes equations 112
1.2 Scale separation 115
2 Turbulent channel flow 118
3 Conclusions 119
References 121
An Immersed Interface Method in the Framework of Implicit Large-Eddy Simulation 122
1 Introduction 122
2 Conservative immersed interface method (CIIM) 123
2.1 Cut-cell volume balance 123
2.2 Friction force 124
2.3 Homogeneous Neumann condition for pressure 124
3 Numerical examples 124
3.1 Square cylinder at Re = 100 125
3.2 Round cylinder at Re = 100 125
3.3 Round cylinder at Re = 3,900 126
4 Concluding remarks 127
References 127
Simulation of Gravity-Driven Flows Using an Iterative High-Order Accurate Navier–Stokes Solver 129
1 Introduction and governing equations 129
2 Numerical approach 130
3 Flow configuration 131
4 Results 132
4.1 Spatial growth of 2D and weak 3D disturbances 132
4.2 3D flow configuration and influence of suspended particles 133
5 Conclusions 134
References 135
Compact Fourth-Order Finite-Volume Method for Numerical Solutions of Navier–Stokes Equations on Staggered Grids 136
1 Introduction 136
2 Cartesian grid system 137
3 Numerical approximations 137
3.1 Cell-centered interpolation for the computation of mass fluxes 137
3.2 Discretisation of Poisson equation 138
3.3 Divergence-free convective fluxes 138
Divergence-free interpolation for convective fluxes 138
3.4 Nonlinear correction 139
4 Validation 139
5 Conclusion 141
References 141
An Accurate Numerical Method for DNS of Turbulent Pipe Flow 142
1 Introduction 142
2 Governing equations and numerical method 142
3 Results 144
References 147
Local Large Scale Forcing of Unsheared Turbulence 148
1 Introduction 148
2 Random force construction 149
3 Results 151
4 Conclusion 153
References 153
Large-Eddy Simulations of a Turbulent Magnetohydrodynamic Channel Flow 154
1 Introduction 154
2 Equations of motion and subgrid modeling 155
3 Numerical methods 155
4 Results 156
5 Conclusions 158
References 159
Development of a DNS-FDF Approach to Inhomogeneous Non-Equilibrium Mixing for High Schmidt Number Flows 160
1 Introduction 160
2 The DNS-FDF approach 161
3 The LMSE model for micro mixing 162
4 Modelling the subgrid scalar dissipation rate 163
5 Conclusions 164
References 165
Multi-Scale Simulation of Near-Wall Turbulent Flows 167
1 Introduction 167
2 Results 170
3 Conclusion 172
References 172
Explicit Algebraic Subgrid Stress Models for Large Eddy Simulation 173
1 Introduction 173
2 Model 174
3 Results 175
4 Conclusion 178
References 178
Scrutinizing the Leray-Alpha Regularization for LES in Turbulent Axisymmetric Free Jets 179
1 Introduction 179
2 Results and discussions 180
References 184
Localization of Unresolved Regions in the Selective Large-Eddy Simulation of Hypersonic Jets 186
1 Small scale detection criterion 186
2 Results 188
3 Concluding remarks 191
References 191
An ADM-Based Subgrid Scale Reconstruction Procedure for Large Eddy Simulation 193
1 Introduction 193
2 Triple-scale decomposition 193
3 Use of ADM to reconstruct the sub-filter field 194
4 Evaluation of the subgrid kinetic energy 196
4.1 The double deconvolution approach 196
4.2 A priori tests on synthetic turbulent fields 197
4.3 Tests on DNS fields 198
5 Conclusions and future works 198
References 199
Large-Eddy Simulation of Turbulent Flow in a Plane Asymmetric Diffuser by the Spectral-Element Method 200
1 Introduction 200
2 Numerical method and simulation setup 201
3 Validation by turbulent channel flow 201
4 Diffuser 202
4.1 Geometry and parameter settings 202
4.2 Results 202
5 Conclusion and outlook 205
References 205
h and p Refinement with Wall Modelling in Spectral-Element LES 207
1 Introduction 207
2 Method 207
3 Error determination 208
4 Results 209
5 Summary 210
References 210
Error-Landscape Assessment of LES Accuracy Using Experimental Data 211
1 Introduction 211
2 Methodology 212
3 Results and discussion 213
4 Conclusions 215
References 216
The Role of Different Errors in Classical LES and in Variational Multiscale LES on Unstructured Grids 217
1 Introduction 217
2 Basic ingredients for numerics and modeling 218
3 Results and discussion 219
References 222
Part III LES Modelling Errors 223
Practical Quality Measures for Large-Eddy Simulation 224
1 Introduction 224
2 Grid resolution measures 225
3 Application 226
4 Discussion and conclusions 228
References 229
The Simplest LES 230
1 Introduction 230
2 The two-point sum and difference operators 231
3 The two-point LES of a passive scalar 233
4 The simplest LES of a passive scalar in the case of a homogeneous turbulent field 234
5 Conclusions 235
References 235
Application of an Anisotropy Resolving Algebraic Reynolds Stress Model within a Hybrid LES-RANS Method 237
1 Introduction 237
2 Hybrid LES-URANS methodology 238
3 Numerical method and test case 240
4 Results and conclusions 240
References 243
LES Meets FSI – Important Numerical and Modeling Aspects 244
1 Introduction 244
2 Important steps for joining LES and FSI 245
2.1 LES on moving grids 245
2.2 Partitioned coupled predictor–corrector scheme 247
References 249
A New Multiscale Model with Proper Behaviour in Both Vortex Flows and Wall Bounded Flows 251
1 Introduction 251
2 Presentation of the model 251
3 LES of the turbulent channel flow 252
4 LES of a counter-rotating four-vortex system 254
5 LES of a two-vortex system in ground effect 254
6 Conclusion 256
References 256
LES Based POD Analysis of Jet in Cross Flow 257
1 Introduction 257
2 Large Eddy simulation (LES) details 257
3 Results 259
4 Conclusions 262
References 263
A Dissipative Scale-Similarity Model 264
1 The dissipative scale-similarity model 264
2 Results 267
2.1 Decaying grid turbulence 267
2.2 Fully developed channel flow 267
3 Concluding comments 269
References 270
Optimization of Turbulent Mixing Restricted by Linear and Nonlinear Constraints 271
1 Introduction 271
2 Cost functionals 272
3 Constrained optimization method 272
4 Computational setup and discretization 273
5 Results 273
5.1 Comparison of the augmented Lagrangian and gradient projection method 273
5.2 Optimization with different cost functionals 274
6 Conclusion 276
References 276
Stochastic Coherent Adaptive LES of Forced Isotropic Turbulence 277
1 Introduction 277
2 Adaptive LES 278
3 Numerical experiments 279
References 282
An Improvement of Increment Model by Using Kolmogorov Equation of Filtered Velocity 283
1 Introduction 283
2 Improved increment model 284
3 A priori numerical verifications 285
4 Conclusion 288
References 288
Symmetry-Preserving Regularization Modelling of a Turbulent Plane Impinging Jet 290
1 Introduction 290
2 C4 regularization modelling 291
3 Numerical method: symmetry preserving discretization 292
3.1 Kinetic energy conservation 292
3.2 Solving the pressure–velocity coupling – Checkerboard problem 293
4 Numerical results 294
5 Conclusions 295
References 295
Progress in the Development of Stochastic Coherent Adaptive LES Methodology 297
1 Introduction 297
2 SCALES methodology 297
References 301
Part IV Scalars 302
LES of Heat Transfer in a Channel with a Staggered Pin Matrix 303
1 Introduction 303
2 Flow specification and computational details 304
3 Discussion of results 305
4 Conclusions 308
References 308
Turbulent Channel Flow with -Shape Turbulators on One Wall 309
1 Introduction 309
2 Numerical procedure 311
3 Results 311
4 Conclusions 314
References 314
Implicit Large-Eddy Simulation of Passive-Scalar Mixing in a Confined Rectangular-Jet Reactor 315
1 Introduction 315
2 Experimental configuration 315
3 Numerical method 316
4 Implicit subgrid-scale modeling for passive-scalar transport 317
5 Computational details and numerical results 317
References 320
Direct Numerical Simulation of a Turbulent Boundary Layer with Passive Scalar Transport 321
1 Introduction 321
2 Numerical approach 322
3 Results 322
4 Conclusion 325
References 326
Part V Active Scalars 328
Numerical Experiments on Turbulent Thermal Convection 329
1 Introduction 329
2 The problem 331
3 Experimental setups 332
4 Numerical simulations 333
5 Results 334
References 336
Direct Numerical Simulation of Turbulent Reacting and Inert Mixing Layers Laden with Evaporating Droplets 337
1 Introduction 337
2 Direct numerical simulation 338
3 Results and discussion 340
4 Conclusions 342
References 342
Large Eddy Simulation of a Two-Phase Reacting Flow in an Experimental Burner 344
1 Introduction 344
2 Numerical configuration and simulations 345
2.1 Calculation domain and mesh 345
2.2 Description of the Euler–Euler (EE) solver 345
2.3 Description of the evaporation and combustion models 346
2.4 Description of the kerosene injection 346
3 Results 347
3.1 Gas flow without droplets (case I) 347
3.2 Gas flow with evaporating droplets (case II) 347
3.3 Reacting two-phase flow (case III) 348
4 Conclusions 349
References 349
Hybrid LES/CAA Simulation of a Turbulent Non-Premixed Jet Flame 351
1 Introduction 351
2 LES/CAA methodology 352
3 Experimental test case and numerical setup 353
4 Results 353
5 Conclusions and outlook 356
References 356
LES/CMC of Forced Ignition of a Bluff-Body Stabilised Non-Premixed Methane Flame 358
1 Introduction 358
2 Modelling 359
3 Results and discussion 360
4 Conclusions 363
References 363
Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser 364
1 Introduction 364
2 Physical and numerical modelling 364
2.1 Axisymetric diffuser 365
2.2 Wall modelling 366
2.3 Generation of realistic inlow 367
3 Results 368
3.1 Profiles of mean velocity 368
3.2 Instantaneous flow 368
4 Conclusion 370
References 370
Direct Numerical Simulation of Hot and Highly Pulsated Turbulent Jet Flows 372
1 Introduction 372
2 Formulation of the problem 373
2.1 Modeling assumptions and governing equations 373
2.2 Numerical procedure 374
3 Numerical results 375
References 377
DNS of Convective Heat Transfer in a Rotating Cylinder 379
1 Introduction 379
2 Numerical procedure 380
3 Coherent structures in the flow 381
4 Heat transfer 383
5 Concluding remarks 384
References 384
Numerical Simulations of Thermal Convection at High Prandtl Numbers 385
1 Introduction 385
2 Physical and numerical setup 386
3 Results 387
3.1 Nusselt number 387
3.2 Characteristic velocity and Reynolds number 388
4 Conclusions 390
References 390
Influence of the Lateral Walls on the Thermal Plumes in Turbulent Rayleigh–Bénard Convection in Rectangular Containers 391
1 Introduction 391
2 Computational setup 392
3 Results 393
4 Conclusions 395
References 396
DNS of Mixed Convection in Enclosed 3D-Domains with Interior Boundaries 397
1 Introduction 397
2 Problem definition 398
3 Numerical method 399
4 Poisson solver 400
5 Results 402
6 Conclusion 402
References 403
LES and Hybrid RANS/LES of Turbulent Flow in Fuel Rod Bundle Arranged with a Triangular Array 404
1 Introduction 404
2 Hybrid RANS/LES 405
3 Case description 406
4 Results 407
5 Conclusion 408
References 409
Large-Scale Patterns in a Rectangular Rayleigh–Bénard Cell 410
1 Introduction 410
2 Numerical set-up 410
3 Results 412
References 413
LES and Laser Measurements of Dynamic Flame/Vortex Interactions 414
1 Introduction 414
2 Experimental work 414
3 Large Eddy simulation (LES) model 415
4 Results and discussion 416
References 417
3D Direct Simulation of a Nonpremixed Hydrogen Flame with Detailed Models 418
1 Introduction 418
2 Physical and computational model 419
3 Results 420
3.1 Turbulent flame structure 420
3.2 Reconstructing the PDF of mixture fraction 421
4 Conclusions 421
References 422
Part VI Environmental and Multiphase Flows 423
Large Eddy Simulation of Pollen Dispersion in the Atmosphere 424
1 Introduction 424
2 Model description 424
3 Numerical discretization 426
4 Validation 426
5 Pollen dispersion from a ragweed field 428
6 Conclusions 430
References 431
Internal Wave Breaking in Stratified Flows Past Obstacles 432
1 Introduction 432
2 Results 432
3 Conclusions 437
References 438
DNS of a Gravity Current Propagating over a Free-Slip Boundary 439
1 Introduction 439
2 Approach 440
2.1 Implementation 441
3 Results 441
References 444
Large Eddy Simulation of Turbulent Mixing in an Estuary Region 445
1 Introduction 445
2 The mathematical model 446
3 Application to an estuarine flow: results and discussion 448
References 450
Dispersion of (Light) Inertial Particles in Stratified Turbulence 451
1 Introduction 451
2 Numerical approach 451
3 Results 453
3.1 Single-particle dispersion 453
3.2 Preferential concentration 454
3.3 Forces acting on the particles 455
4 Concluding remarks 456
References 456
The Influence of Magnetic Fields on the Rise of Gas Bubbles in Electrically Conductive Liquids 458
1 Introduction 458
2 Numerical method 459
3 Results 460
3.1 Gas bubbles rising on linear paths 460
3.2 Gas bubbles on unsteady paths 462
4 Conclusions 463
References 463
Large Eddy Simulation of a Turbulent Droplet LadenMixing Layer 465
1 Introduction 465
2 Mathematical modelling 466
2.1 Filtered Navier–Stokes equations 466
2.2 PDF modelling of fuel sprays 466
3 Results and discussion 467
4 Conclusions 470
References 470
The Diffuse Interface Method with Korteweg Approach for Isothermal, Two-Phase Flow of a Van der Waals Fluid 471
1 Introduction 471
2 The numerical method 472
3 Benchmark simulations 474
3.1 Drop retraction 474
3.2 Two-drop collision 474
3.3 Determination of surface tension 475
4 Concluding remarks 476
References 476
Numerical Simulation of Air Flows in Street Canyons Using Mesh-Adaptive LES 477
1 Methodology 477
1.1 Inlet boundary conditions 478
1.2 Traffic induced turbulence 478
2 Results and conclusions 479
References 480
Part VII Aerodynamics and Wakes 482
LES of the Flow Around a Two-Dimensional Vehicle Model with Active Flow Control 483
1 Introduction 483
2 Description of the model and numerical set-up 484
2.1 Boundary conditions and the actuation 485
2.2 Numerical simulations 485
3 Results 485
References 489
Wake-Vortex Decay in External Turbulence 490
1 Introduction 490
2 Computational setting and regularization modeling 491
3 Direct numerical simulation 492
4 Regularization modeling of vortex decay 494
5 Concluding remarks 494
References 495
DNS of Aircraft Wake Vortices: The Effect of Stable Stratification on the Development of the Crow Instability 496
1 Introduction 496
2 Approach 497
3 Results 498
References 501
On the Download Alleviation for the XV-15 Wing by Active Flow Control Using Large-Eddy Simulation 503
1 Introduction 503
2 Numerical method 503
3 Results 505
3.1 Drag and lift 505
3.2 Pressure coefficient distribution and its RMS 505
3.3 Mean velocity, pressure and resolved kinetic energy 507
4 Conclusion 508
References 508
Turbulent Flow Simulations Around an Airfoil At High Incidences Using URANS, DES and ILES Approaches 509
1 Introduction 509
2 Methodologies 509
3 Simulation conditions and setup 510
4 Numerical results and discussions 511
5 Conclusions 515
References 516
Large Eddy Simulation of Flow Around an Airfoil Near Stall 517
1 Introduction 517
2 Results 518
3 Conclusions 520
References 520
Large Eddy Simulation of Turbulent Flows Around a Rotor Blade Segment Using a Spectral Element Method 522
1 Numerical method and computational parameters 522
2 Results of large eddy simulations 523
3 Outlook and future work 525
References 525
Part VIII Compressible Flows 526
DNS of Compressible Turbulent Flows 527
1 Introduction 527
2 Comparison of supersonic channel and pipe flow 528
2.1 Mean flow variables 529
2.2 Reynolds stresses and budgets 531
3 Supersonic nozzle and diffuser flow 533
4 Conclusions 536
References 537
Large-Eddy Simulation of Transonic Buffet over a Supercritical Airfoil 538
1 Introduction 538
2 Description of the computation 539
3 Mean field analysis 539
4 Spectral analysis 541
5 Space and time scales 541
6 Discussion 543
References 543
Detached-Eddy and Delayed Detached-Eddy Simulation of Supersonic Flow over a Three-Dimensional Cavity 544
1 Introduction 544
2 Numerical methodology 545
3 Details of the test case 545
4 Results 545
4.1 Comparison of DES, DES-MB and DDES 545
4.2 Influence of grid resolution 547
4.3 Influence of momentum thickness of the boundary layer at the cavity leading edge 548
5 Summary 549
References 549
A WALE-Similarity Mixed Model for Large-Eddy Simulation of Wall Bounded Compressible Turbulent Flows 551
1 Introduction 551
2 Mathematical formulation 552
2.1 The WALE-similarity model (WSM) 553
2.2 Flow configuration and numerics 553
3 Results and discussion 554
References 556
Parametric Study of Compressible Turbulent Spots 558
1 Introduction 558
2 Method 559
3 Results 560
4 Conclusion 563
References 563
Azimuthal Resolution Effects in LES of Subsonic Jet Flow and Influence on Its Noise 564
1 Numerical methods 564
2 Resolution effect 566
2.1 Effect on the flow field 566
2.2 Effect on the acoustic near-field 568
3 Conclusions 569
References 570
Large Eddy Simulations of Compressible MHD Turbulence in Heat-Conducting Fluid 571
1 Introduction 571
2 LES formulation 571
3 Results 573
References 575
"LES Meets FSI – Important Numerical and Modeling Aspects (p. 245-246)
M. Breuer1,2 and M. Münsch2
1 Dept. of Fluid Mechanics, Institute of Mechanics, Helmut-Schmidt-University Hamburg, Holstenhofweg 85, D-22043 Hamburg, Germany, breuer@hsu-hh.de 2 Institute of Fluid Mechanics, University of Erlangen-N¨urnberg, Cauerstr. 4, D-1058 Erlangen, Germany, mmuensch@lstm.uni-erlangen.de
Abstract The paper is concerned with two main aspects, which should be considered when large–eddy simulation (LES) is married to ?uid–structure interaction (FSI). First, the in?uence of moving grids leading to temporally varying ?lter widths and thus additional commutation errors on the quality of the predicted results is thoroughly investigated. Second, a new partitioned coupling method based on the predictor–corrector scheme often used for LES is evaluated. A strongly coupled but nevertheless still explicit time–stepping algorithm results, which is very e?cient in the LES–FSI context. This new scheme is evaluated in detail based simulations around elastically supported cylindrical structures and a swiveling ?at plate.
1 Introduction
Fluid–structure interaction (FSI) plays a dominant role in many technical applications such as suspension bridges, o?-shore platforms or even vocal folds. Therefore, a strong need for appropriate numerical simulation tools exists for such coupled problems. In previous studies, FSI applications in the regime of laminar ?ows as well as turbulent ?ows using the RANS approach [5, 6] were numerically investigated. For that purpose, a partitioned fully implicit scheme was applied which coupled a three-dimensional ?nite-volume based multi-block ?ow solver for incompressible ?uids with a ?nite-element code for the structural problem.
This coupling scheme works e?ciently for large time step sizes typically used for implicit time-stepping schemes within RANS predictions. However, ?ow problems involving large-scale ?ow structures such as vortex shedding or instantaneous separation and reattachment are often not reliably predicted by RANS and more advanced techniques such as largeeddy simulation (LES) are required. To resolve the turbulent ?ow ?eld in time, LES uses small time steps.
Thus, in general explicit time-marching schemes are favored, especially predictor–corrector schemes [1,2]. Furthermore, for FSI applications the solution domain changes in time due to the displacement of the boundaries linked to the structure. Thus moving grids have to be used which has a direct in?uence on the ?ltering approach in LES. Thus the paper addresses the aspects of additional errors introduced (e.g., commutation errors) and code coupling, which should be considered when LES is married to FSI.
2 Important steps for joining LES and FSI
2.1 LES on moving grids
Within an FSI application the ?uid forces acting on the structure lead to the displacement or deformation of the structure. Thus the computational domain is no longer ?xed but changes in time. Besides other numerical techniques to account for these variations, the most popular one is the so-called Arbitrary Lagrangian–Eulerian (ALE) formulation. Here the conservation equations for mass, momentum (and energy) are re-formulated for a temporally varying domain."
| Erscheint lt. Verlag | 28.4.2010 |
|---|---|
| Reihe/Serie | ERCOFTAC Series | ERCOFTAC Series |
| Zusatzinfo | IV, 646 p. |
| Verlagsort | Dordrecht |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
| Technik ► Maschinenbau | |
| Schlagworte | Buffet • convection • Detached-Eddy Simulation • Direct Numerical Simulation • fluid mechanics • large-eddy simulation • Large Eddy Simulation • Multiphase Flow • NavierâStokes equation • Navier–Stokes Equation • Profil • Turbulence |
| ISBN-10 | 90-481-3652-0 / 9048136520 |
| ISBN-13 | 978-90-481-3652-0 / 9789048136520 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich