Introduction to Singularities and Deformations (eBook)
472 Seiten
Springer-Verlag
978-3-540-28419-2 (ISBN)
Singularity theory is a field of intensive study in modern mathematics with fascinating relations to algebraic geometry, complex analysis, commutative algebra, representation theory, theory of Lie groups, topology, dynamical systems, and many more, and with numerous applications in the natural and technical sciences.
This book presents the basic singularity theory of analytic spaces, including local deformation theory, and the theory of plane curve singularities. Plane curve singularities are a classical object of study, rich of ideas and applications, which still is in the center of current research and as such provides an ideal introduction to the general theory. Deformation theory is an important technique in many branches of contemporary algebraic geometry and complex analysis. This introductory text provides the general framework of the theory while still remaining concrete.
In the first part of the book the authors develop the relevant techniques, including the Weierstraß preparation theorem, the finite coherence theorem etc., and then treat isolated hypersurface singularities, notably the finite determinacy, classification of simple singularities and topological and analytic invariants. In local deformation theory, emphasis is laid on the issues of versality, obstructions, and equisingular deformations. The book moreover contains a new treatment of equisingular deformations of plane curve singularities including a proof for the smoothness of the mu-constant stratum which is based on deformations of the parameterization. Computational aspects of the theory are discussed as well. Three appendices, including basic facts from sheaf theory, commutative algebra, and formal deformation theory, make the reading self-contained.
The material, which can be found partly in other books and partly in research articles, is presented from a unified point of view for the first time. It is given with complete proofs, new in many cases. The book thuscan serve as source for special courses in singularity theory and local algebraic and analytic geometry.
Preface 7
Contents 11
I Singularity Theory 13
1 Basic Properties of Complex Spaces and Germs 20
2 Hypersurface Singularities 122
3 Plane Curve Singularities 173
II Local Deformation Theory 233
1 Deformations of Complex Space Germs 234
2 Equisingular Deformations of Plane Curve Singularities 278
A Sheaves 391
A.1 Presheaves and Sheaves 391
A.2 Gluing Sheaves 393
A.3 Sheaves of Rings and Modules 394
A.4 Image and Preimage Sheaf 395
A.5 Algebraic Operations on Sheaves 396
A.6 Ringed Spaces 397
A.7 Coherent Sheaves 399
A.8 Sheaf Cohomology 400
A.9 Cech Cohomology and Comparison 404
B Commutative Algebra 409
B.1 Associated Primes and Primary Decomposition 409
B.2 Dimension Theory 411
B.3 Tensor Product and Flatness 414
B.4 Artin-Rees and Krull Intersection Theorem 418
B.5 The Local Criterion of Flatness 419
B.6 The Koszul Complex 422
B.7 Regular Sequences and Depth 426
B.8 Cohen-Macaulay, Flatness and Fibres 428
B.9 Auslander-Buchsbaum Formula 434
C Formal Deformation Theory 437
C.1 Functors of Artin Rings 437
C.2 Obstructions 443
C.3 The Cotangent Complex 448
C.4 Cotangent Cohomology 453
C.5 Relation to Deformation Theory 455
References 459
Index 467
| Erscheint lt. Verlag | 23.2.2007 |
|---|---|
| Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
| Zusatzinfo | XII, 472 p. 54 illus. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
| Technik | |
| Schlagworte | Algebra • Complex space germs • deformation theory • Equisingularity • Local and semi-local rings • Plane curve singularities • singularity theory • Versal deformation |
| ISBN-10 | 3-540-28419-2 / 3540284192 |
| ISBN-13 | 978-3-540-28419-2 / 9783540284192 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich