Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Algorithms and Architectures for Parallel Processing -

Algorithms and Architectures for Parallel Processing (eBook)

7th International Conference, ICA3PP 2007, Hangzhou, China, June 11-14, 2007
eBook Download: PDF
2007 | 1. Auflage
523 Seiten
Springer-Verlag
978-3-540-72905-1 (ISBN)
Systemvoraussetzungen
60,95 inkl. MwSt
(CHF 59,55)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book constitutes the refereed proceedings of the 7th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2007, held in Hangzhou, China in June 2007.



The 39 revised full papers presented together with one keynote talk and three invited lectures were carefully reviewed and selected from 176 submissions. Focusing on two broad areas of parallel and distributed computing--architectures, algorithms and networks, and systems and applications--the papers are organized in topical sections on parallel algorithms, parallel architecture, grid computing, peer-to-peer technologies, and advanced network technologies.



Written for: Researchers and professionals



Keywords: P2P systems, QoS, Web services, cluster computing, componnet-based SE, computational science, distributed computing, dynamic load-balancing, finite automata, grid computing, high performance computing, inter-domain routing, interconnection networks, load balancing, mobile computing, network computing, network-on-chip, numerical algorithms, parallel algorithms, parallel programming, pervasive computing, real-time systems, scheduling, scientific computing, simulation, system-on-chip, ubiquitous communication, wireless sensor networks

Title Page 2
Preface 6
Organization 8
Table of Contents 12
Author Index 522

PHC: A Rapid Parallel Hierarchical Cubing Algorithm on High Dimensional OLAP. (p. 72-73)

Kongfa Hu1, Ling Chen1, and Yixin Chen2
1 Department of Computer Science and Engineering, Yangzhou University, 225009, China
2 Department of Computer Science and Engineering, Washington University, 63130, USA

Abstract. Data cube has been playing an essential role in OLAP (online analytical processing). The pre-computation of data cubes is critical for improving the response time of OLAP systems. However, as the size of data cube grows, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional OLAP, it might not be practical to build all these cuboids and their indices. In this paper, we propose a parallel hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. The algorithm has two components: decomposition of the cube space based on multiple dimension attributes, and an efficient OLAP query engine based on a prefix bitmap encoding of the indices. This method partitions the high dimensional data cube into low dimensional cube segments. Such an approach permits a significant reduction of CPU and I/O overhead for many queries by restricting the number of cube segments to be processed for both the fact table and bitmap indices. The proposed data allocation and processing model support parallel I/O and parallel processing, as well as load balancing for disks and processors. Experimental results show that the proposed parallel hierarchical cubing method is significantly more efficient than other existing cubing methods. Keywords: data cube, parallel hierarchical cubing algorithm (PHC), high dimensional OLAP.

1 Introduction

Data warehouses integrate massive amounts of data from multiple sources and are primarily used for decision support purposes. They have to process complex analytical queries for different access forms such as OLAP (on-line analytical processing), data mining, etc. OLAP refers to the technologies that allow users to efficiently retrieve data from the data warehouse for decision support purposes [1]. A lot of research has been done in order to improve the OLAP query performance and to provide fast response times for queries on large data warehouses. Efficient indexing [2], materialization [3] and data cubing [4] are common techniques to speed up the OLAP query processing. Many efficient cube computation algorithms have been proposed recently, such as BUC [5], H-cubing [6], Quotient cubing [7], and Starcubing [8]. However, in the large data warehouse applications, such as bioinformatics, the data usually has high dimensionality with more than 100 dimensions. Since data cube grows exponentially with the number of dimensions, it is generally too costly in both computation time and storage space to materialize a full high-dimensional data cube. For example, a data cube of 100 dimensions, each with 100 distinct values, may contain as many as 101100 cells. If we consider the dimension hierarchies, the aggregate cell will increase even more tremendously. Although condensed cube [9], dwarf cube [10], or star cubes [8] can delay the explosion, it does not solve the fundamental problem [11]. The minimal cubing approach from Li and Han [11] can alleviate this problem, but does not consider the dimension hierarchies and cannot efficiently handle OLAP queries. In this paper, we develop a feasible parallel hierarchical cubing algorithm (PHC) that supports dimension hierarchies for highdimensional data cubes and answers OLAP queries efficiently. The algorithm decomposes a multi-dimensional hierarchical data cube into smaller cube segments. This proposed data allocation and processing model supports parallel I/O and parallel processing as well as load balancing for disks and processors. This proposed cubing algorithm is an efficient and scalable parallel processing algorithm for cube computation.

Erscheint lt. Verlag 1.1.2007
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
ISBN-10 3-540-72905-4 / 3540729054
ISBN-13 978-3-540-72905-1 / 9783540729051
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Design scalable and high-performance Java applications with Spring

von Wanderson Xesquevixos

eBook Download (2025)
Packt Publishing (Verlag)
CHF 31,65