Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistics, Data Mining, and Machine Learning in Astronomy - Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas, Alexander Gray

Statistics, Data Mining, and Machine Learning in Astronomy

A Practical Python Guide for the Analysis of Survey Data
Buch | Hardcover
560 Seiten
2014
Princeton University Press (Verlag)
978-0-691-15168-7 (ISBN)
CHF 146,60 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Provides an introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope.
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided.
The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers

Zeljko Ivezi? is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.

*Frontmatter, pg. i*Contents, pg. v*Preface, pg. ix*1. About the Book and Supporting Material, pg. 3*2. Fast Computation on Massive Data Sets, pg. 43*3. Probability and Statistical Distributions, pg. 69*4. Classical Statistical Inference, pg. 123*5. Bayesian Statistical Inference, pg. 175*6. Searching for Structure in Point Data, pg. 249*7. Dimensionality and Its Reduction, pg. 289*8. Regression and Model Fitting, pg. 321*9. Classification, pg. 365*10. Time Series Analysis, pg. 403*A. An Introduction to Scientific Computing with Python, pg. 471*B. AstroML: Machine Learning for Astronomy, pg. 511*C. Astronomical Flux Measurements and Magnitudes, pg. 515*D. SQL Query for Downloading SDSS Data, pg. 519*E. Approximating the Fourier Transform with the FFT, pg. 521*Visual Figure Index, pg. 527*Index, pg. 533

Reihe/Serie Princeton Series in Modern Observational Astronomy
Zusatzinfo 12 color illus. 2 halftones. 173 line illus.
Verlagsort New Jersey
Sprache englisch
Maße 178 x 254 mm
Gewicht 1247 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
ISBN-10 0-691-15168-7 / 0691151687
ISBN-13 978-0-691-15168-7 / 9780691151687
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95