Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees - Lee Mosher, Michah Sageev, Kevin Whyte

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

Buch | Softcover
105 Seiten
2011
American Mathematical Society (Verlag)
978-0-8218-4712-1 (ISBN)
CHF 119,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups.
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $/mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $/mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $/mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $/mathcal{G}_v$ is a graph $/epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $/mathcal{G}_v$ are crossed by other edge groups incident to $/mathcal{G}_v$, and the crossing graph condition requires that $/epsilon_v$ be connected or empty.
Erscheint lt. Verlag 23.12.2011
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Gewicht 192 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-4712-0 / 0821847120
ISBN-13 978-0-8218-4712-1 / 9780821847121
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
a history of modern trigonometry

von Glen Van Brummelen

Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 34,90