Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Calculus - Deborah Hughes-Hallett, Andrew M. Gleason, William G. McCallum, Daniel E. Flath, Patti Frazer Lock

Calculus

Single Variable
Buch | Softcover
768 Seiten
2012 | 6th edition
John Wiley & Sons Inc (Verlag)
978-0-470-88864-3 (ISBN)
CHF 229,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Deborah Hughes-Hallett, Andrew M. Gleason, William G. McCallum
2016
Loseblattwerk/Zeitschrift | Loseblattwerk
CHF 133, 60
zur Neuauflage
Calculus: Single Variable, 6th Edition continues the effort to promote courses in which understanding and computation reinforce each other. The 6th Edition reflects the many voices of users at research universities, four-year colleges, community colleges, and secondary schools. This new edition has been streamlined to create a flexible approach to both theory and modeling. For instructors wishing to emphasize the connection between calculus and other fields, the text includes a variety of problems and examples from the physical, health, and biological sciences, engineering and economics. In addition, new problems on the mathematics of sustainability and new case studies on calculus in medicine by David E. Sloane, MD have been added.

 

1 A LIBRARY OF FUNCTIONS

1.1 FUNCTIONS AND CHANGE

1.2 EXPONENTIAL FUNCTIONS

1.3 NEW FUNCTIONS FROM OLD

1.4 LOGARITHMIC FUNCTIONS

1.5 TRIGONOMETRIC FUNCTIONS

1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS

1.7 INTRODUCTION TO CONTINUITY

1.8 LIMITS

REVIEW PROBLEMS

PROJECTS

2 KEY CONCEPT: THE DERIVATIVE

2.1 HOW DO WE MEASURE SPEED?

2.2 THE DERIVATIVE AT A POINT

2.3 THE DERIVATIVE FUNCTION

2.4 INTERPRETATIONS OF THE DERIVATIVE

2.5 THE SECOND DERIVATIVE

2.6 DIFFERENTIABILITY

REVIEW PROBLEMS

PROJECTS

3 SHORT-CUTS TO DIFFERENTIATION

3.1 POWERS AND POLYNOMIALS

3.2 THE EXPONENTIAL FUNCTION

3.3 THE PRODUCT AND QUOTIENT RULES

3.4 THE CHAIN RULE

3.5 THE TRIGONOMETRIC FUNCTIONS

3.6 THE CHAIN RULE AND INVERSE FUNCTIONS

3.7 IMPLICIT FUNCTIONS

3.8 HYPERBOLIC FUNCTIONS

3.9 LINEAR APPROXIMATION AND THE DERIVATIVE

3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS

REVIEW PROBLEMS

PROJECTS

4 USING THE DERIVATIVE

4.1 USING FIRST AND SECOND DERIVATIVES

4.2 OPTIMIZATION

4.3 OPTIMIZATION AND MODELING

4.4 FAMILIES OF FUNCTIONS AND MODELING

4.5 APPLICATIONS TO MARGINALITY

4.6 RATES AND RELATED RATES

4.7 L’HOPITAL’S RULE, GROWTH, AND DOMINANCE

4.8 PARAMETRIC EQUATIONS

REVIEW PROBLEMS

PROJECTS

5 KEY CONCEPT: THE DEFINITE INTEGRAL

5.1 HOW DO WE MEASURE DISTANCE TRAVELED?

5.2 THE DEFINITE INTEGRAL

5.3 THE FUNDAMENTAL THEOREM AND INTERPRETATIONS

5.4 THEOREMS ABOUT DEFINITE INTEGRALS

REVIEW PROBLEMS

PROJECTS

6 CONSTRUCTING ANTIDERIVATIVES

6.1 ANTIDERIVATIVES GRAPHICALLY AND NUMERICALLY

6.2 CONSTRUCTING ANTIDERIVATIVES ANALYTICALLY

6.3 DIFFERENTIAL EQUATIONS AND MOTION

6.4 SECOND FUNDAMENTAL THEOREM OF CALCULUS

REVIEW PROBLEMS

PROJECTS

7 INTEGRATION

7.1 INTEGRATION BY SUBSTITUTION

7.2 INTEGRATION BY PARTS

7.3 TABLES OF INTEGRALS

7.4 ALGEBRAIC IDENTITIES AND TRIGONOMETRIC SUBSTITUTIONS

7.5 NUMERICAL METHODS FOR DEFINITE INTEGRALS

7.6 IMPROPER INTEGRALS

7.7 COMPARISON OF IMPROPER INTEGRALS

REVIEW PROBLEMS

PROJECTS

8 USING THE DEFINITE INTEGRAL

8.1 AREAS AND VOLUMES

8.2 APPLICATIONS TO GEOMETRY

8.3 AREA AND ARC LENGTH IN POLAR COORDINATES

8.4 DENSITY AND CENTER OF MASS

8.5 APPLICATIONS TO PHYSICS

8.6 APPLICATIONS TO ECONOMICS

8.7 DISTRIBUTION FUNCTIONS

8.8 PROBABILITY, MEAN, AND MEDIAN

REVIEW PROBLEMS

PROJECTS

9 SEQUENCES AND SERIES

9.1 SEQUENCES

9.2 GEOMETRIC SERIES

9.3 CONVERGENCE OF SERIES

9.4 TESTS FOR CONVERGENCE

9.5 POWER SERIES AND INTERVAL OF CONVERGENCE

REVIEW PROBLEMS

PROJECTS

10 APPROXIMATING FUNCTIONS USING SERIES

10.1 TAYLOR POLYNOMIALS

10.2 TAYLOR SERIES

10.3 FINDING AND USING TAYLOR SERIES

10.4 THE ERROR IN TAYLOR POLYNOMIAL APPROXIMATIONS

10.5 FOURIER SERIES

REVIEW PROBLEMS

PROJECTS

11 DIFFERENTIAL EQUATIONS

11.1 WHAT IS A DIFFERENTIAL EQUATION?

11.2 SLOPE FIELDS

11.3 EULER’S METHOD

11.4 SEPARATION OF VARIABLES

11.5 GROWTH AND DECAY

11.6 APPLICATIONS AND MODELING

11.7 THE LOGISTIC MODEL

11.8 SYSTEMS OF DIFFERENTIAL EQUATIONS

11.9 ANALYZING THE PHASE PLANE

REVIEW PROBLEMS

PROJECTS

APPENDICES

A ROOTS, ACCURACY, AND BOUNDS

B COMPLEX NUMBERS

C NEWTON’S METHOD

D VECTORS IN THE PLANE

READY REFERENCE

ANSWERS TO ODD-NUMBERED PROBLEMS

INDEX

Erscheint lt. Verlag 22.11.2012
Verlagsort New York
Sprache englisch
Maße 206 x 264 mm
Gewicht 1315 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-470-88864-4 / 0470888644
ISBN-13 978-0-470-88864-3 / 9780470888643
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95
Differentialrechnung im ℝⁿ, gewöhnliche Differentialgleichungen

von Otto Forster; Florian Lindemann

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 46,15