Data Mining for Business Applications
Springer-Verlag New York Inc.
9781441946355 (ISBN)
Domain Driven KDD Methodology.- to Domain Driven Data Mining.- Post-processing Data Mining Models for Actionability.- On Mining Maximal Pattern-Based Clusters.- Role of Human Intelligence in Domain Driven Data Mining.- Ontology Mining for Personalized Search.- Novel KDD Domains & Techniques.- Data Mining Applications in Social Security.- Security Data Mining: A Survey Introducing Tamper-Resistance.- A Domain Driven Mining Algorithm on Gene Sequence Clustering.- Domain Driven Tree Mining of Semi-structured Mental Health Information.- Text Mining for Real-time Ontology Evolution.- Microarray Data Mining: Selecting Trustworthy Genes with Gene Feature Ranking.- Blog Data Mining for Cyber Security Threats.- Blog Data Mining: The Predictive Power of Sentiments.- Web Mining: Extracting Knowledge from the World Wide Web.- DAG Mining for Code Compaction.- A Framework for Context-Aware Trajectory.- Census Data Mining for Land Use Classification.- Visual Data Mining for Developing Competitive Strategies in Higher Education.- Data Mining For Robust Flight Scheduling.- Data Mining for Algorithmic Asset Management.
| Zusatzinfo | XX, 302 p. |
|---|---|
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
| Informatik ► Office Programme ► Outlook | |
| Informatik ► Theorie / Studium ► Algorithmen | |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| ISBN-13 | 9781441946355 / 9781441946355 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich