Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mathematical Theory of Optimization -  Ding-Zhu Du, Panos M. Pardalos,  Weili Wu

Mathematical Theory of Optimization

Buch | Softcover
273 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2001
Springer-Verlag New York Inc.
978-1-4419-5202-8 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Optimization is of central importance in all sciences. Nature inherently seeks optimal solutions. For example, light travels through the "shortest" path and the folded state of a protein corresponds to the structure with the "minimum" potential energy. In combinatorial optimization, there are numerous computationally hard problems arising in real world applications, such as floorplanning in VLSI designs and Steiner trees in communication networks. For these problems, the exact optimal solution is not currently real-time computable. One usually computes an approximate solution with various kinds of heuristics. Recently, many approaches have been developed that link the discrete space of combinatorial optimization to the continuous space of nonlinear optimization through geometric, analytic, and algebraic techniques. Many researchers have found that such approaches lead to very fast and efficient heuristics for solving large problems. Although almost all such heuristics work well in practice there is no solid theoretical analysis, except Karmakar's algorithm for linear programming. With this situation in mind, we decided to teach a seminar on nonlinear optimization with emphasis on its mathematical foundations. This book is the result of that seminar. During the last decades many textbooks and monographs in nonlinear optimization have been published. Why should we write this new one? What is the difference of this book from the others? The motivation for writing this book originated from our efforts to select a textbook for a graduate seminar with focus on the mathematical foundations of optimization.

1 Optimization Problems.- 2 Linear Programming.- 3 Blind Man’s Method.- 4 Hitting Walls.- 5 Slope and Path Length.- 6 Average Slope.- 7 Inexact Active Constraints.- 8 Efficiency.- 9 Variable Metric Methods.- 10 Powell’s Conjecture.- 11 Minimax.- 12 Relaxation.- 13 Semidefinite Programming.- 14 Interior Point Methods.- 15 From Local to Global.- Historical Notes.

Erscheint lt. Verlag 29.11.2010
Reihe/Serie Nonconvex Optimization and Its Applications ; 56
Zusatzinfo XIII, 273 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Software Entwicklung
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4419-5202-0 / 1441952020
ISBN-13 978-1-4419-5202-8 / 9781441952028
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Entwurfsmuster für effektive Softwareentwicklung

von Karl Eilebrecht; Gernot Starke

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 27,95
Praxishandbuch für Java- und Webservice-Entwickler

von Kai Spichale

Buch | Softcover (2025)
dpunkt (Verlag)
CHF 62,85