Fixed Point Theory for Decomposable Sets
Seiten
2010
|
1st ed. Softcover of orig. ed. 2004
Springer (Verlag)
978-90-481-6672-5 (ISBN)
Springer (Verlag)
978-90-481-6672-5 (ISBN)
Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if
(Q) for all and measurable A.
This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property.
Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.
(Q) for all and measurable A.
This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property.
Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.
Preliminaries.- Real and vector measures.- Preliminary notions.- Upper and lower semicontinuous multifunctions.- Measurable multifunctions.- Carathéodory type multifunctions.- Fixed points property for convex-valued mappings.- Decomposable sets.- Selections.- Fixed points property.- Aumann integrals.- Selections of Aumann integrals.- Fixed points for multivalued contractions.- Operator and differential inclusions.- Decomposable analysis.
| Reihe/Serie | Topological Fixed Point Theory and Its Applications ; 2 |
|---|---|
| Zusatzinfo | XI, 209 p. |
| Verlagsort | Dordrecht |
| Sprache | englisch |
| Maße | 160 x 240 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 90-481-6672-1 / 9048166721 |
| ISBN-13 | 978-90-481-6672-5 / 9789048166725 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90