An Introduction to Complex Function Theory
Seiten
1990
|
1st ed. 1991. Corr. 2nd printing 1995
Springer-Verlag New York Inc.
978-0-387-97427-9 (ISBN)
Springer-Verlag New York Inc.
978-0-387-97427-9 (ISBN)
Lese- und Medienproben
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Provides an introduction to the theory of analytic functions of a single complex variable. Starting from basic definitions, this text develops the ideas of complex analysis. Each chapter concludes with a selection of exercises.
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Contents: The Complex Number System.- The Rudiments of Plane Topology.- Analytic Functions.- Complex Integration.- Cauchy's Theorem and its Consequences.- Harmonic Functions.- Sequences and Series of Analytic Functions.- Isolated Singularities of Analytic Functions.- Conformal Mapping.- Constructing Analytic Functions.- Appendix A: Background on Fields.- Appendix B: Winding Numbers Revisited.- Index.
| Erscheint lt. Verlag | 7.9.1995 |
|---|---|
| Reihe/Serie | Undergraduate Texts in Mathematics |
| Zusatzinfo | black & white illustrations |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 989 g |
| Einbandart | gebunden |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 0-387-97427-X / 038797427X |
| ISBN-13 | 978-0-387-97427-9 / 9780387974279 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90