Intelligent Control Based on Flexible Neural Networks
Seiten
1999
|
1999 ed.
Kluwer Academic Publishers (Verlag)
978-0-7923-5683-7 (ISBN)
Kluwer Academic Publishers (Verlag)
978-0-7923-5683-7 (ISBN)
References . 57 Chapter 3 Flexible Neural Networks . 3 Flexible Bipolar Sigmoid Functions . 5 Examples . 3 Flexible Neural Network as an Indirect Controller . 5 Simulation Examples . 3 Computed Torque Control . 4 Self-tunig Computed Torque Control . 5 Simulation Examples . 3 Simulation Examples .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Introduction.- 2 Fundamentals of Neural Networks.- 3 Flexible Neural Networks.- 4 Self-Tuning PID Control.- 5 Self-Tuning Computed Torque Control: Part I.- 6 Self-Tuning Computed Torque Control: Part II.- 7 Development of an Inverse Dynamics Model.- 8 Self-organizing Flexible Neural Network.- 9 Conclusions.
| Erscheint lt. Verlag | 30.6.1999 |
|---|---|
| Reihe/Serie | Intelligent Systems, Control and Automation: Science and Engineering ; 19 |
| Zusatzinfo | XVI, 236 p. |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Technik ► Elektrotechnik / Energietechnik | |
| Technik ► Maschinenbau | |
| ISBN-10 | 0-7923-5683-7 / 0792356837 |
| ISBN-13 | 978-0-7923-5683-7 / 9780792356837 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20