Theory of High Temperature Superconductivity
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 2002
Springer (Verlag)
978-90-481-5883-6 (ISBN)
Springer (Verlag)
978-90-481-5883-6 (ISBN)
Flux quantization experiments indicate that the carriers, Cooper pairs (pairons), in the supercurrent have charge magnitude 2e, and that they move independently. Josephson interference in a Superconducting Quantum Int- ference Device (SQUID) shows that the centers of masses (CM) of pairons move as bosons with a linear dispersion relation. Based on this evidence we develop a theory of superconductivity in conventional and mate- als from a unified point of view. Following Bardeen, Cooper and Schrieffer (BCS) we regard the phonon exchange attraction as the cause of superc- ductivity. For cuprate superconductors, however, we take account of both optical- and acoustic-phonon exchange. BCS started with a Hamiltonian containing “electron” and “hole” kinetic energies and a pairing interaction with the phonon variables eliminated. These “electrons” and “holes” were introduced formally in terms of a free-electron model, which we consider unsatisfactory. We define “electrons” and “holes” in terms of the cur- tures of the Fermi surface. “Electrons” (1) and “holes” (2) are different and so they are assigned with different effective masses: Blatt, Schafroth and Butler proposed to explain superconductivity in terms of a Bose-Einstein Condensation (BEC) of electron pairs, each having mass M and a size. The system of free massive bosons, having a quadratic dispersion relation: and moving in three dimensions (3D) undergoes a BEC transition at where is the pair density.
Superconducting Transition.- Bloch Electrons.- Phonon-Exchange Attraction.- Quantum Statistical Theory.- Cooper Pairs (Pairons).- Superconductors at 0 K.- Quantum Statistics of Composites.- Bose-Einstein Condensation.- The Energy Gap Equations.- Pairon Energy Gaps. Heat Capacity.- Quantum Tunneling.- Flux Quantization.- Ginzburg-Landau Theory.- Josephson Effects.- Compound Superconductors.- Lattice Structures of Cuprates.- High-Tc Superconductors Below Tc.- Doping Dependence of Tc.- Transport Properties Above Tc.- Out-of-Plane Transport.- Seebeck Coefficient (Thermopower).- Magnetic Susceptibility.- Infrared Hall Effect.- d-Wave Cooper Pairs.- Connection with Other Theories.- Summary and Remarks.
| Erscheint lt. Verlag | 4.12.2010 |
|---|---|
| Reihe/Serie | Fundamental Theories of Physics ; 121 |
| Zusatzinfo | XIX, 374 p. |
| Verlagsort | Dordrecht |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Naturwissenschaften ► Chemie ► Physikalische Chemie | |
| Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
| Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
| Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
| ISBN-10 | 90-481-5883-4 / 9048158834 |
| ISBN-13 | 978-90-481-5883-6 / 9789048158836 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …
Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90